
Reporting Guide
HawkEye AP 5.0.1

February 5, 2014

Hexis Cyber Solutions, Inc.
2800 Campus Drive, Suite 150

San Mateo, CA 94403
+1 (650) 830-0484

fax: +1 (650) 631-2810
www.hexiscyber.com

Copyright

Copyright © 2013-2014 Hexis Cyber Solutions, Inc.

This document is unpublished and the foregoing notice is affixed to protect Hexis Cyber Solutions, Inc. in the event of
inadvertent publication. All rights reserved.

No part of this document may be reproduced in any form, including photocopying or transmission electronically to
any computer, without prior written consent of Hexis Cyber Solutions, Inc. The information contained in this document
is confidential and proprietary to Hexis Cyber Solutions, Inc., and may not be used or disclosed except as expressly
authorized in writing by Hexis Cyber Solutions, Inc.

Trademarks

The Hexis Cyber Solutions® logo and HawkEye AP are registered trademarks of Hexis Cyber Solutions, Inc., in the
United States. Other company, product names or logos mentioned or reproduced in this document may be
trademarks or registered trademarks of their respective companies and are hereby acknowledged.

Patents

The software described in this manual contains technology protected by U.S. Patent 7,024,414.

Permitted Use

This document is provided by Hexis Cyber Solutions, Inc., and/or its subsidiaries to entities using the services
described herein pursuant to a separate services and/or software license agreement. This document may be used by
such entities only for the limited purpose of using the services described herein as authorized by such services
agreement. Any other use of this document is strictly prohibited, unless expressly authorized by Hexis Cyber
Solutions, Inc., in writing.

Disclaimer and Limitation of Liability

Except as otherwise expressly provided in the applicable services and/or software license agreement, Hexis Cyber
Solutions, Inc., and its subsidiaries make no representations or warranties of any kind, whether express or implied,
regarding the accuracy of this document and disclaim the implied warranties of merchantability, fitness for a particular
purpose, title and non-infringement of third party rights, to the maximum extent permitted by law. Hexis Cyber
Solutions, Inc., and its subsidiaries assume no responsibility for any damage or loss resulting from the use of this
document. This document is subject to revision from time to time.

Confidential Information

The information contained in this document is confidential and proprietary to Hexis Cyber Solutions, Inc., and its
subsidiaries and may not be used or disclosed except as expressly authorized in writing by Hexis Cyber Solutions,
Inc. This document is released to the possessor on a strictly secure basis. No authority, express or implied, exists to
permit discussion with any third party. By continuing to possess this document, the bearer accepts all direct and
indirect responsibility for keeping these materials in confidence. The bearer acknowledges the implicit material
commercial harm to Hexis Cyber Solutions, Inc., of unauthorized disclosure of the contents herein, including an
acknowledgment of responsibility for such damages caused to Hexis Cyber Solutions, Inc., if any.

Destination Control Statement

ECCN (Export Control Classification Number):5D002 ENC

These commodities, technology, or software were exported from the United States in accordance with the Export
Administration Regulations. Diversion contrary to United States law is prohibited.

Reporting Guide

TABLE OF CONTENTS
PREFACE . 19

Audience for this Book . 19
Reporting Guide Organization . 19
Road Map to HawkEye AP Documentation . 21
Conventions Used in HawkEye AP Documentation 23
Contacting Technical Support . 24

CHAPTER 1: GETTING STARTED . 25

Overview . 25
Accessing HawkEye AP Console . 25

Logging into HawkEye AP Console . 26
Logging out of the HawkEye AP Console . 27

Navigating HawkEye AP Console . 27
Introduction to the Interface . 27

Global Menu Bar . 30
Global Tool Bar . 30
Navigator . 31
Workspace . 31
Chooser . 33
Options Pane . 35
Status Bar . 35

Setting Preferences . 35
Changing Your Password . 36
Accessing Online Help . 36

How does your data get to HawkEye AP Console? 37
Reporting and HawkEye AP Analytics . 38
Querying and Sensage SQL . 38

CHAPTER 2: USING DASHBOARDS . 41

Overview . 41
Viewing Reports . 42

About HawkEye AP Reports . 42
Cached Data: Making Stored Data Quickly Available 43
Namespaces: Using a Single Report or Dashboard to Access Different Data 43
Viewing and Changing Display of Report Data and Metadata 44

Changing Column Order . 45
Widening Column Display in a Report . 45
Filtering and Sorting Report Data . 46
Showing and Hiding Report Columns and Metadata . 48
Changing Between Table and Chart Formats . 49
Viewing the SQL Query and Other Properties . 50

Manipulating and Expanding Report Results . 51
Viewing and Changing the Time Range and Namespace 51
Calculating Report Data . 53
Opening an Associated Report . 54
Reporting Guide 3

Table of Contents
Browsing to Other Reports . 57
Investigating Data from a Line Chart . 60

Viewing Security Alerts . 64
Background . 65
About HawkEye AP Security Alerts . 66
Security Alerts: Working with the Asset Tree . 67
Security Alerts: Working with the Alerts Table . 68
Viewing the Information in a Security Alert . 68
Launching Associated Reports . 69
Understanding and Using Threat and Risk Views 71

Background . 71
Understanding Threat and Risk Views . 73
Using Threat View . 75
Using Risk View . 75

Sorting Alert Data . 76
Widening Column Display in an Alert Widget . 77
Acknowledging Viewed Alerts . 77
Filtering Alert Data . 77
Security Alerts: Using the Alert Player . 78

Expanding Alert Table Data . 79
The First Contributing Event . 80
The Second and Subsequent Contributing Events . 81
Viewing the Raw Data . 83

Security Alerts: Understanding the Alerting Rule that Raised the Alert . . 83
Viewing Exception Alerts . 84

Viewing the Report that Raised the Exception . 85
Using the Exception Alert Widget . 85

Refreshing Dashboards and Running Items . 85
Exporting Dashboards and Reports . 86

Exporting a Dashboard or Report to PDF . 87
Exporting a Dashboard . 87
Exporting from Reports Mode . 88
PDF Cover Sheet . 88
Instructions for Exporting to PDF . 88

Exporting a Report to a CSV File . 90
Exporting a Report to an HTML File . 91
Exporting a Report to an XML File . 92

CHAPTER 3: RUNNING, VIEWING, AND MANAGING REPORTS 95

Overview of Reports Mode and the All Report Definitions List 95
What Does a Report Definition Specify? . 97

Finding Specific Reports in the All Report Definitions List 98
Running a Report . 100

Background . 100
Run Dialog for a Wizard Report . 102

Modifying the Time Range . 102
Changing the Namespace . 103
Modifying the Operator . 103
Adding, Deleting, and Modifying Criteria Rows . 104

Run Dialog for a SQL Report . 105
Run Report Status Dialog . 106
Running Multiple Reports Simultaneously . 109

Managing Report Shortcuts in Folders . 110
Modifying Display of a Report . 112
4 Reporting Guide

Table of Contents
Viewing Report Results and Managing Report Cache Entries 114
Viewing and Changing Cache Entries . 114
Deleting Cache Entries . 116

Viewing the Report Query . 116
Viewing Report Statistics . 117
Deleting Report Definitions . 118
Viewing and Assigning Report Schedules . 120
Using Distribution Filters to Limit Viewable Data by Role 120

Applying a Distribution Filter to a Report . 120
Viewing and Assigning Report, Dashboard, and Folder Permissions 122

Overview of Roles and Permissions . 122
Creating New Reports, Shortcuts, Folders or Dashboards 122
Special Roles . 123

Default Roles and Permissions . 123
Setting Roles and Permissions in HawkEye AP Console 125

CHAPTER 4: CREATING AND EDITING WIZARD REPORTS 129

Creating Wizard Reports . 129
Step 1: Specifying Where to Get the Data . 129

Specifying Report Name and Data Source . 130
Understanding How HawkEye AP Displays Date and Time 132
Selecting, Renaming, and Ordering Columns for Display 132

Step 2: Specifying What Data to Return . 133
Date Criteria: Specifying Time Range . 134
Column Criteria: Limiting the Number of Returned Rows 139

Step 3: Specifying Further Refinements . 146
Specifying Maximum Number of Rows to Retrieve . 147
Specifying Column Sort . 148

Running and Viewing the Wizard Report . 149
Editing a Wizard Report . 151

Batch Editing Multiple Reports for Time Range, Time Zone, and Namespace 151
Editing a Single Report . 153
Summarizing Data . 154

Creating Summary Reports . 154
Specifying a Threshold . 159

Associating Reports to a Report or Security Alert 161
Associating a Report to Another Report . 161
Associating a Report to a Security Alert . 164
Specifying Print Options and Maximum Rows . 166

Formatting Columns . 167
Changing Column Width and Relative Position . 167
Changing Column Name and Data Type . 169
Formatting Font, Alignment, and Color . 170

Defining Charts . 171

CHAPTER 5: CREATING AND EDITING SQL REPORTS 177

Overview of SQL Reports . 177
Creating a SQL Report . 177

Specifying the Report’s Name, Description, and Namespace 177
Entering the Query . 179
Specifying a Time Range . 180

Running and Viewing the Report . 181
Reporting Guide 5

Table of Contents
Editing the SQL Report . 183
Parameterizing Your Query . 184

Background . 184
Adding Parameters to the SQL Query . 185
Creating Parameter Fields That Display to the User . 187
Running and Testing the Parameterized SQL Report 189
Adding a Parameter to the HAVING Clause . 190
Adding a Parameter to the FROM Clause . 191
Defining Parameters for an Associated Report . 194
Relevant Documentation . 195

Adding a Library to Your Query . 195
Creating a Library . 197

Viewing and Changing a SQL Report That Has Been Run 199
Viewing and Manipulating the SQL Query . 200

CHAPTER 6: CREATING AND MANAGING DASHBOARDS 203

Overview . 203
Creating a Dashboard . 204

Step 1: Creating the Dashboard . 204
Step 2: Adding a Report Widget to a Dashboard Page 205
Step 3: Switching Between Chart and Table Display 207
Step 3: Adding a Second Widget . 209
Step 5: Working With a Text Widget . 211
Creating a Page . 213
Adding and Formatting Image Widgets . 214
Locking the Dashboard . 215
Removing a Widget from a Page . 216

Managing Dashboards . 216
Setting Dashboard Options . 216

Specifying Date Options . 217
Setting Permissions . 218
Viewing Properties . 220

Modifying and Scheduling Report Widgets . 220
Viewing and Changing the Time Range and Namespace 220
Scheduling and Modifying Reports from the Dashboard 222
Automatically Merging Cache Entries . 224
Setting Other Widget Options . 225

Managing Dashboards in Folders . 225
Viewing and Assigning Dashboard and Folder Permissions 226
Running Dashboards . 227
Deleting Dashboards . 228
Deploying Dashboards to Your Users . 228

CHAPTER 7: CREATING AND EDITING SCHEDULES 229

Overview . 229
Creating Schedules . 232

Naming and Describing a Schedule . 232
Schedule Tab: Setting Frequency and Lifetime 233

Specifying Frequency . 233
Specifying Lifetime . 235

Reports & Dashboards Tab: Selecting and Deleting Items to Schedule 238
Output Tab: Specifying Destination . 241

Emailing Scheduled Items . 243
6 Reporting Guide

Table of Contents
Enabling and Disabling A Schedule . 244
Editing and Deleting Schedules . 244

CHAPTER 8: CREATING ALERTING RULES FROM TEMPLATES 247

Overview . 247
Introduction to Alerting Rule Templates . 247
Understanding Alert Thresholds and Alert Windows 250
Creating and Modifying Alerting Rules from Templates 251
Creating a Rule from a Template . 258
Activating, Deactivating, and Deleting Rules 261

Activating Rules . 261
Deactivating Rules . 261
Deleting Rules . 261

CHAPTER 9: REPORT LIBRARIES REFERENCE . 263

Geo IP Utility . 263
domain() . 263

Synopsis . 263
Arguments . 263
Example . 263
Return Value . 263

get_country_from_domain() . 263
Synopsis . 264
Arguments . 264
Example . 264
Return Value . 264

IP Conversion Utility . 264
hex_to_dotted_quad(IP address in Hexadecimal format) 264

Synopsis . 264
Arguments . 264
Return Value . 264
Example . 265

Internal System Audit Library . 265
service2Description() . 265

Synopsis . 265
Arguments . 265
Return Value . 265
Example . 265

Microsoft Windows Library . 265
loginType2desc() . 266

Synopsis . 266
Arguments . 266
Return Value . 266
Example . 266

eventId2desc() . 266
Synopsis . 266
Arguments . 266
Return Value . 266
Example . 266

rights2desc() . 267
Synopsis . 267
Arguments . 267
Return Value . 267
Reporting Guide 7

Table of Contents
Example . 267
k5code2desc() . 267

Synopsis . 267
Arguments . 267
Return Value . 267
Example . 267

CHAPTER 10: SENSAGE SQL . 269

Overview of Sensage SQL SELECT Statements 269
Basic SELECT Syntax . 269

Significant Terms . 270
Keywords and Clauses Required in SELECT statements 270
About Tables and Namespaces . 270

Target Clauses . 271
Computed expressions in Target Clauses . 271
Named Targets . 271
Invisible targets . 272
DISTINCT Modifier Keyword . 272
FIRST and LAST Modifiers . 272

FROM Clauses . 273
Syntax of FROM Clauses . 273
Table Specifications in FROM Clauses . 273
Example FROM Clauses . 274

Identifiers as the Table Name . 274
String Expressions as the Table Name . 274
Expression Macros as the Table Name . 274

Including Rows from Bad Loads . 275
DURING Clauses . 275

Alternative Formats for DURING Clauses . 275
Timestamp Precision in DURING Clauses . 276
Subqueries and Views and the DURING Clause 276

Specifying DURING ALL in the View—HawkEye AP Console Usage 277
WHERE Clauses . 277
GROUP BY Clauses and Aggregation Queries 278

Aggregation Partitioning . 278
Aggregation Functions . 279
Multi-column GROUP BY . 281
IN n PASSES . 281

SLICE BY Clauses . 282
HAVING Clauses . 283
ORDER BY Clauses . 284
UNION ALL Clauses . 285

Restrictions on UNION ALL . 285
Alternative to UNION ALL . 285

Data Types . 286
bool . 286
float . 286
int32 . 287
int64 . 287
timestamp . 287
varchar . 288

Converting varchar Values to timestamp Values . 289
Varchar Representations of Durations . 289
8 Reporting Guide

Table of Contents
Data Source Expressions . 289
Column Expressions . 290
Literal constants . 290

Integer Literals . 291
Floating-Point Literals . 291
String Literals . 291
Typecast Literals . 292

Data Processing Expressions . 292
Operators . 293

Math Operators . 293
The String Concatenation Operator . 294
Comparison Operators . 294
Logical Operators . 296
Operator Precedence . 297

Functions . 297
Function Syntax . 298
Asterisks as Column-Expression Arguments . 298
The SORT BY Modifier Keyword . 299
The DISTINCT Modifier Keyword . 299

Conversion Expressions . 299
CONVERT Expressions . 300
Function-style Conversion Expressions . 300
Typecast Literal Conversion Expressions . 301

CASE Expressions . 301
Processing Directives . 301

Macros . 302
About Macros . 302
Expression Macros . 302
Star Macros . 303
Multiple Declarations of a Given Macro . 305
Resolving Macro Identifiers . 305
Overriding Multiple Macro Declarations . 305

User-Defined Subroutines . 306
Subqueries . 307

Subqueries with DURING Clauses . 308
Subqueries and UNION ALL Clauses . 308
Subqueries and the WHERE clause . 309

Table-Name Substitutes . 309
WHERE Clause Filters . 310
Settings . 311

The TIMEZONE Setting . 311
The Scope of Processing Directives . 312

Global State Modifiers . 312
Local Definitions . 312

Working with Lists . 313
Multiple Values as Lists . 313
Functions that Return Lists . 313
List Acceptors . 314
INTO Keyword . 315
List Expressions and FROM Clauses . 315
EXPLODE Keyword . 316
EXPLODE BY Keyword Phrase . 316
Some Helpful List Examples . 317

CHAPTER 11: SQL FUNCTIONS . 319
Reporting Guide 9

Table of Contents
Conditional Evaluation Functions . 319
_if() . 319

Synopsis . 319
Description . 319
Arguments . 320
Return Value . 320
Exceptions . 320
Example . 320

_iftable() . 320
Synopsis . 320
Description . 321
Arguments . 321
Return values . 321
Exceptions . 321

List Functions . 321
_list() . 321

Synopsis . 322
Description . 322
Arguments . 322
Return Value . 322
Example . 322

_nth() . 322
Synopsis . 322
Description . 322
Arguments . 323
Return Value . 323
Exceptions . 323
Example . 323

Lookup Functions . 323
_lookup() . 324

Synopsis . 324
Description . 324
Arguments . 324
Examples . 328
Exceptions . 331
Working with Lookup Files . 331

_rev_dns() . 334
Synopsis . 334
Description . 334
Arguments . 334
Return Value . 334
Exceptions . 334

_tablematch() . 334
Synopsis . 334
Description . 334
Arguments . 336
Return Value . 336
Example . 336

Aggregation Functions . 337
avg() . 337

Synopsis . 337
Description . 338
Arguments . 338
Return Value . 338
Exceptions . 338
Example . 338

count() . 338
10 Reporting Guide

Table of Contents
Synopsis . 338
Description . 338
Arguments . 338
Return Value . 339
Examples . 339

max() . 339
Synopsis . 339
Description . 339
Arguments . 339
Return Values . 339
Exceptions . 339
Example . 340

min() . 340
Synopsis . 340
Description . 340
Arguments . 340
Return Values . 340
Exceptions . 340
Example . 341

median() . 341
Synopsis . 341
Description . 341
Arguments . 341
Return Value . 341
Exceptions . 341
Example . 341

sum() . 342
Synopsis . 342
Description . 342
Arguments . 342
Return Values . 342
Exceptions . 342
Examples . 342

_first() . 342
Synopsis . 343
Description . 343
Arguments . 343
Return Value . 343

_last() . 343
Synopsis . 343
Description . 343
Arguments . 343
Return Value . 343

_strsum() . 343
Synopsis . 343
Description . 344
Arguments . 344
Return values . 344

Statistical Aggregate Functions . 344
var_pop() . 344

Synopsis . 344
Description . 344
Arguments . 345
Return Value . 345

stddev_pop() . 345
Synopsis . 345
Description . 345
Arguments . 346
Reporting Guide 11

Table of Contents
Return values . 346
var_samp() . 346

Synopsis . 346
Description . 346
Arguments . 347
Return Value . 347

stddev_samp() . 347
Synopsis . 347
Description . 347
Arguments . 348
Return values . 348

variance() . 348
stddev() . 348

Logarithmic and Exponential Functions . 348
_log() . 349

Synopsis . 349
Description . 349
Arguments . 349
Return Value . 349

_log10() . 349
Synopsis . 349
Description . 349
Arguments . 349
Return Value . 350

_pow() . 350
Synopsis . 350
Description . 350
Arguments . 350
Return Value . 350

_exp() . 350
Synopsis . 350
Description . 350
Arguments . 350
Return Value . 350

Numeric Rounding Functions . 351
_abs() . 351

Synopsis . 351
Description . 351
Arguments . 351
Return Value . 351
Exceptions . 351

_ceil() . 351
Synopsis . 351
Description . 352
Arguments . 352
Return Value . 352

_floor() . 352
Synopsis . 352
Description . 352
Arguments . 352
Return Value . 352
Example . 352

_round() . 352
Synopsis . 353
Description . 353
Arguments . 353
Return Value . 353
12 Reporting Guide

Table of Contents
Exceptions . 353
String Functions . 353

_strlowercase(), _lc() . 354
Synopsis . 354
Description . 354
Arguments . 355
Return Value . 355
Examples . 355

_struppercase(), _uc() . 355
Synopsis . 355
 Description . 355
Arguments . 355
Return Value . 355

_strmd5(), _md5() . 355
Synopsis . 356
Description . 356
Arguments . 356
Return Value . 356
Exceptions . 356

_strmd5_64(), _md5_64() . 356
Synopsis . 356
Description . 356
Arguments . 357
Return Value . 357
Example . 357

_strlen() . 357
Synopsis . 357
Description . 357
Arguments . 357
Return Value . 357
Examples . 357

_strstr() . 358
Synopsis . 358
Description . 358
Arguments . 358
Return Value . 358
Examples . 358

_strmatch() . 358
Synopsis . 358
Description . 358
Arguments . 359
Return Value . 359
Exceptions . 359
Examples . 359

_strmatchlist() . 359
Synopsis . 359
Description . 359
Arguments . 360
Return Values . 360
Example . 360

_strsplit() . 360
Synopsis . 360
Description . 360
Arguments . 360
Return Values . 361

_strsplitxsv() . 361
Synopsis . 361
Description . 361
Reporting Guide 13

Table of Contents
Return Values . 361
_strleft() . 361

Synopsis . 361
Description . 361
Arguments . 362
Return Value . 362

_strright() . 362
Synopsis . 362
Description . 362
Arguments . 362
Return Value . 362

_strmiddle(), substr() . 362
Synopsis . 362
Description . 362
Arguments . 363
Return Value . 363

_strrepeat() . 363
Synopsis . 363
Description . 363
Arguments . 363
Return Value . 363
Exceptions . 363
Examples . 364

_strlpad() . 364
Synopsis . 364
Description . 365
Arguments . 365
Return Value . 365
Exceptions . 365
Examples . 365

_strrpad() . 366
Synopsis . 366
Description . 367
Arguments . 367
Return Value . 367
Exceptions . 367
Examples . 367

_strtrim() . 368
Synopsis . 368
Description . 368
Arguments . 369
Return Value . 369
Examples . 369

_strlink() . 369
Synopsis . 369
Description . 370
Arguments . 370
Return Value . 370
Examples . 370

_strcat() . 371
Synopsis . 371
Description . 371
Arguments . 371
Return Value . 371
Example . 371

_strjoin() . 371
Synopsis . 371
Description . 371
14 Reporting Guide

Table of Contents
Arguments . 372
Return Value . 372
Example . 372

_strformat(), _sprintf() . 372
Synopsis . 372
Description . 372
Arguments . 372
Format Specifiers . 373
Return Value . 374
Exceptions . 374
Examples . 374

Time Functions . 374
_now(), now() . 375

Synopsis . 375
Description . 375
Return Value . 375

_time(), time() . 375
Synopsis . 375
Description . 375
Arguments . 376
Return Value . 377
Examples . 377

_timeadd() . 378
Synopsis . 378
Description . 378
Arguments . 378
Return Value . 378
Examples . 378

_timediff() . 379
Synopsis . 379
Description . 379
Arguments . 379
Return Value . 379
Example . 379

_timeformat(), _timef() . 380
Synopsis . 380
Description . 380
Arguments . 380
Return Value . 382
Exceptions . 383
Example . 383

_timeparse(), _strptime() . 383
Synopsis . 384
Description . 384
Arguments . 384
Return Value . 384
Exceptions . 384
Examples . 385

_timestart() . 385
Synopsis . 385
Description . 385
Arguments . 385
Return Value . 385
Exceptions . 386

Network Address Functions . 387
_abbrev() . 387

Synopsis . 387
Reporting Guide 15

Table of Contents
Description . 387
Arguments . 387
Return Value . 387
Examples . 388

_broadcast() . 388
Synopsis . 388
Description . 388
Arguments . 388
Return Value . 388

_family() . 388
Synopsis . 388
Description . 388
Arguments . 389
Return Value . 389

_host() . 389
Synopsis . 389
Description . 389
Arguments . 389
Return Value . 389
Examples . 389

_hostmask() . 390
Synopsis . 390
Description . 390
Arguments . 390
Return Value . 390
Examples . 390

_masklen() . 390
Synopsis . 390
Description . 390
Arguments . 390
Return Value . 391
Examples . 391

_netmask() . 391
Synopsis . 391
Description . 391
Arguments . 391
Return Value . 391
Examples . 391

_set_masklen() . 391
Synopsis . 391
Description . 391
Arguments . 392
Return Value . 392
Examples . 392

_mapto_ipv4, _mapto_ipv6() . 392
Synopsis . 392
Description . 392
Arguments . 392
Return Value . 392

_inet_plus() . 392
Synopsis . 393
Description . 393
Arguments . 393
Return Value . 393
Examples . 393

_inet_minus() . 393
Synopsis . 393
Description . 393
16 Reporting Guide

Table of Contents
Arguments . 393
Return Value . 393
Examples . 394

_inet_and(), _inet_not(), _inet_or() . 394
Synopsis . 394
Description . 394
Arguments . 394
Return Value . 394
Examples . 394

Miscellaneous Functions . 394
_quantize() . 395

Synopsis . 395
Description . 395
Arguments . 396
Return Value . 399
Exceptions . 399

_fifo() . 399
Synopsis . 399
Description . 400
Arguments . 400
Return Value . 400
Exceptions . 400

_lms_taskid() . 400
Synopsis . 400
Description . 400
Return Value . 400
Example . 401

_lms_buildinfo() . 401
Synopsis . 401
Description . 401
Return Value . 401
Example . 401

_fromname() . 402
Synopsis . 402
Description . 402
Return Value . 402
Examples . 402

_fromindex() . 403
Synopsis . 403
Description . 403
Return Value . 403
Examples . 403

CHAPTER 12: PERL SUBROUTINES . 405

About Perl Subroutines in HawkEye AP SQL 405
How Perl Processing Works . 405

Declaring Perl Functions . 406
Declaring Perl Aggregates . 407
Perl Execution Environment . 409

Exiting from Perl Subroutines . 409
List Support and Perl Functions . 409
Using Macros in Perl Subroutines . 410
Understanding Parallelism and Side Effects . 411

Accessing External Modules . 412
The use Directive . 412
Reporting Guide 17

Table of Contents
The @INC Variable . 413
The Inline.pm Perl Module . 413

Testing and Debugging Perl Subroutines . 413
Running Perl Subroutines in Test Scripts . 413
Printing Debugging Messages in Utility Logs . 414
Printing Debugging Messages to External Files 415

Installing Perl Modules . 415

CHAPTER 13: USING THE DBD DRIVER . 417

Installation . 417
Sample DBI Program . 418
Explanation of the Sample DBI Program . 418
DBI elements Supported by HawkEye AP . 420
HawkEye AP DBD attributes . 421

addamark_tableNamespace . 421
addamark_rawOutputHandle . 421
addamark_dbgprintRequest . 422
addamark_oob_callback . 422

APPENDIX A: TIME ZONES . 423

Time-Zone Conversion . 423
Supported Time Zones . 423

INDEX . 433
18 Reporting Guide

Reporting Guide

PREFACE

This book, the Reporting Guide, describes the 5.0.1 version of HawkEye AP software.

HawkEye AP reporting includes:

reports—provide information on event data collected from all sources in your Enterprise and
stored in the HawkEye AP Event Data Warehouse (EDW); display results in tabular or graphic
form.

The HawkEye AP distribution includes Analytics Reports, which provide a comprehensive
solution for reporting on event data stored in the EDW.

alerts—provide immediate information about enterprise and system assets and for exception
reports; the HawkEye AP Real-Time system collects enterprise alerts and displays them before
storing them in the EDW.

HawkEye AP Console is the primary interface for creating and viewing reports and viewing and
investigating alerts. Business analysts can use HawkEye AP Console to run reports provided by
HawkEye AP, create new reports using a wizard, view and investigate alerts, modify and run
saved reports, schedule reports, and create dashboards that customize display of event and alert
data. Advanced users can also use the Sensage SQL query language and Perl functions to create
reports for special situations. This manual documents the HawkEye AP Console interface,
HawkEye AP Analytics, and the Sensage SQL query language and its related Perl functions.

NOTE: HawkEye AP Console also provides an Administration Mode interface that enables you to
create users, roles, and assets, and to enable rules. For information on these and other
administration tasks, see the Administration Guide.

This Preface contains the following sections:

• “Audience for this Book”, next

• “Reporting Guide Organization”, on page 19

• “Road Map to HawkEye AP Documentation”, on page 21

• “Conventions Used in HawkEye AP Documentation”, on page 23

• “Contacting Technical Support”, on page 24

AUDIENCE FOR THIS BOOK

This book is directed to:

business analysts—who use dashboards and reports to analyze event data

developers—who create SQL queries, views, and reports, and who develop log adapter PTL
files

REPORTING GUIDE ORGANIZATION

This book contains the following chapters:
Reporting Guide 19

Preface
Chapter 1: Getting Started—Describes high-level architecture, documents how to log in and
out of HawkEye AP Console, introduces the HawkEye AP Console interface and its
components, documents how to set user preferences, introduces HawkEye AP Analytics
reports, and introduces HawkEye AP SQL.

Chapter 2: Using Dashboards—Describes how to view reports and alerts in a dashboard

Chapter 3: Running, Viewing, and Managing Reports—Describes how to manage HawkEye AP
reports

Chapter 4: Creating and Editing Wizard Reports—Describes how to create and edit Wizard
reports

Chapter 5: Creating and Editing SQL Reports—Describes how to create and edit SQL reports

Chapter 6: Creating and Managing Dashboards—Describes how to create and manage
dashboards

Chapter 7: Creating and Editing Schedules—Describes how to create and manage schedules

Chapter 8: Creating Alerting Rules from Templates—Describes how to create alerting rules

Chapter 9: Report Libraries Reference—Provides a reference on libraries you can use to create
reports.

Chapter 10: Sensage SQL—Provides HawkEye AP SQL reference

NOTE: HawkEye AP SQL enables data retrieval, but does not support data update or delete.
These functions are unnecessary to log analysis and prohibited by compliance

Chapter 11: SQL Functions—Provides reference for the rich library of functions that HawkEye
AP SQL supports. Supported tasks include string matching, time handling, and mathematical
functions, lookups, and conditional evaluations.

Chapter 12: Perl Subroutines—Provides reference on how to create, debug, and use Perl
routines from within HawkEye AP SQL. These functions allow you to perform complex
transforms on data.
20 Reporting Guide

Road Map to HawkEye AP Documentation
ROAD MAP TO HAWKEYE AP DOCUMENTATION

This document, the Reporting Guide, is part of the larger documentation set of your HawkEye AP
system. Figure P-1 illustrates HawkEye AP components and modules in the context of their
function within the HawkEye AP system.

Figure P-1: Road Map to HawkEye AP Documentation

The table below describes all the manuals in the HawkEye AP documentation set and the user
roles to which they are directed.

Role Tasks Documentation

Business Analyst • Use and create dashboards

• View and create reports

• Monitor enterprise and exception
alerts

• Schedule reports & dashboards

• Create Alerting Rules from
Templates

Reporting Guide
Reporting Guide 21

Preface
TIP: You can access the manuals listed above from:

HawkEye AP Console online help

Click Help > Help Contents.

HawkEye AP Welcome page

Business Analyst • Learn about Analytics

• Use IntelliSchema views

• Learn about the Foundation and
Compliance Analytics packages

• Learn about additional Analytics
packages

Analytics Guide

Report Developer or
Security Analyst

• Use Sensage SQL, Sensage SQL
functions, and libraries to create
reports or query the EDW

• Create and use Perl code in
Sensage SQL statements

• Use the DBD Driver to query
HawkEye AP from other locations

Reporting Guide

Security System
Administrator

• Configure retrievers, receivers,
and collectors

• Configure HawkEye Retriever

• Create log adapter PTL files

Event Collection Guide

Security Analyst • Create parsing rules, alerting
rules, and configurable alerting
rule templates

• Manage rules

HawkEye Event Processing
Language Developers Guide

System Administrator • Install HawkEye AP

• Configure HawkEye AP and its
components

Installation, Configuration, and
Upgrade Guide

System Administrator • Install Analytics Installing Analytics

System Administrator • Manage the HawkEye AP Event
Data Warehouse (EDW)

• Manage the Collector

• Manage users, groups, and
permissions

• Archive to nearline storage

• Manage assets & monitor
security alerts

• Monitor log source health

• Monitor system health

• Troubleshoot

• Error Messages

Administration Guide

System Administrator • Install and configure log adapters Analytics Guide

Developer • Access EDW data using open
standards as ANSI SQL, ODBC,
and JDBC

Using Open Access Extension

Legal Monitor third-party licenses Third-Party Open Source
Licensing

Role Tasks Documentation
22 Reporting Guide

Conventions Used in HawkEye AP Documentation
Click the Documentation hyperlink.

For more information, see “Logging into HawkEye AP Console” in the Administration Guide.

CONVENTIONS USED IN HAWKEYE AP DOCUMENTATION

This conven-
tion...

Indicates... Example

bold text Names of user interface items, such as
field names, buttons, menu choices,
and keystrokes

Click Clear Filter.

italic text Indicates a variable name or a new
term the first time it appears

http://<host>:<port>/index.mhtml

Use the whammerjammer to adjust the
whamming frequency.

Courier text Indicates a literal value, such as a
command name, file name, information
typed by the user, or information
displayed by the system

atquery localhost:8072 myquery.sql

SMALL CAPS Indicates a key on the computer
keyboard

Press ENTER.

{ } In a syntax line, curly braces surround
a set of options from which you must
choose one and only one.
NOTE: Syntax specifications for
SELECT statements include curly
braces as part of the
{INCLUDE_BAD_LOADS] keyword.

{ start | stop | restart }

[] In a syntax line, square brackets
surround an optional parameter

atquery [options] <host>:<port> -

| In a syntax line, a pipe within square
brackets or curly braces separates a
choice between mutually exclusive
parameters
NOTE: Syntax for defining a Nearline
Storage Address (NSA) includes a
pipe.

{ start | stop | restart }

[g|m]

... In a syntax line, ellipses indicate a
repetition of the previous parameter

The following example indicates you can
enter multiple, comma-separated options:
<option>[, <option>[…]]
Reporting Guide 23

Preface
CONTACTING TECHNICAL SUPPORT

For additional help, email support@hexiscyber.com or call +1 650 830-0484, Option 2. Also see
the Hexis Cyber Solutions Technical Support web page at http://www.hexiscyber.com/content/
for HawkEye AP documentation, product downloads, and additional information on contacting
support to escalate help on issues that impact your production environment.

backslash (\) A backslash in command-line syntax or
in a command example behaves as the
escape character on Unix. It removes
any special meaning from the character
immediately following it. In HawkEye
AP documentation, a backslash
nullifies the special meaning of the
newline character as a command
terminator. Without the backslash,
pressing ENTER at the end of the line
causes the Unix system to execute the
text preceding the ENTER. Without the
backslash, you must allow long
commands to wrap over multiple lines
as a single line.

atquery --user=administrator \
--pass=pass:p@ss localhost:8072\
-e='SELECT * FROM system.users;'

This conven-
tion...

Indicates... Example
24 Reporting Guide

CHAPTER 1

Getting Started

This chapter describes the following sections:

• “Overview”, next

• “Accessing HawkEye AP Console”, on page 25

• “Navigating HawkEye AP Console”, on page 27

• “How does your data get to HawkEye AP Console?”, on page 37

• “Reporting and HawkEye AP Analytics”, on page 38

• “Querying and Sensage SQL”, on page 38

OVERVIEW

HawkEye AP reporting enables you to make use of the event data collected by your HawkEye AP
deployment. HawkEye AP collects the event data from information systems in your organization
and transforms the data into reports and alerts that help identify threats and areas of concern in
your organization. The primary interface for viewing and manipulating these reports and alerts is
HawkEye AP Console.

HawkEye AP Console is a graphical application that runs on a Windows workstation. HawkEye AP
Console remotely accesses the HawkEye AP Event Data Warehouse (EDW) to retrieve stored
event data for display on your local workstation. HawkEye AP Console also receives alerts, which
represent streaming event data that matches pre-defined criteria.

Not only does HawkEye AP Console enable you to view event data, it also enables users with
appropriate permissions to:

consolidate reports, alerts, and other elements into dashboards for quick access to important
information

create folders that organize reports and dashboards for viewing

create, edit, run, and schedule reports and dashboards

create users and grant them permissions

create and manage libraries

manage assets and rules

This chapter provides an overview of HawkEye AP Console functionality. The following chapters
in this book provide details on using HawkEye AP Console and HawkEye AP reporting.

ACCESSING HAWKEYE AP CONSOLE

This section describes the following topics:

• “Logging into HawkEye AP Console”, next

• “Logging out of the HawkEye AP Console”, on page 27
Reporting Guide 25

Chapter 1: Getting Started
Logging into HawkEye AP Console

To access HawkEye AP Console, first open the HawkEye AP Welcome page in your Web
browser. For the Web address of the welcome page as well as your user name and password,
contact your HawkEye AP administrator.

To log into the HawkEye AP Console

1 Enter the HawkEye AP Web address in your Web browser.

The HawkEye AP Welcome page displays, as shown in Figure 1-1.

Figure 1-1: HawkEye AP Welcome Page

2 Click HawkEye AP Console.

3 Java Web Start launches and the HawkEye AP Console login window displays, as shown in
Figure 1-2.

Figure 1-2: HawkEye AP Console Login Window
26 Reporting Guide

Navigating HawkEye AP Console
4 Enter your User Name and Password.

5 Click OK.

The HawkEye AP Console window displays, as shown in Figure 1-3.

Logging out of the HawkEye AP Console

To log out of HawkEye AP Console

From the menu, select File > Exit.

NAVIGATING HAWKEYE AP CONSOLE

• “Introduction to the Interface”, next

• “Setting Preferences”, on page 35

• “Changing Your Password”, on page 36

• “Accessing Online Help”, on page 36

Introduction to the Interface

HawkEye AP Console provides graphical access to event data collected by a HawkEye AP
deployment, system data, and tools for viewing and manipulating the data. HawkEye AP Console
has three different modes:

Dashboards

Dashboards Mode enables you to organize and view HawkEye AP reports and alerts on one or
more pages that group the data meaningfully and facilitate interpretation of the data.
Dashboards can display images and text that enhance the displayed data.

This mode enables creation and display of multiple dashboards, each with multiple pages.
Typically dashboards display information for a particular audience or purpose and are
organized within folders to further group their data meaningfully.

You can schedule, run, print, export, and email dashboard pages and their reports. You can
perform some of those same operations on reports that display on a dashboard. The
dashboard as an entity can be locked, which hides the title bar and container outline of each
displayed widget and prevents repositioning of the widgets. User permissions determine
access to dashboards and dashboard items.

For more information, see:

Chapter 2: Using Dashboards

Chapter 6: Creating and Managing Dashboards

Reports

Reports Mode enables you to create, modify, and run reports, and to view report output. This
mode enables creation of two types of report (Wizard and SQL), display of report data in
tabular or chart format, and linking of reports. Whereas Dashboards mode enables you to view
and run existing reports, Reports mode allows you to view, create, edit, and run reports.
Reporting Guide 27

Chapter 1: Getting Started
Reports mode also facilitates management of existing reports, which includes organizing report
definitions in folders and viewing information about each definition, such as the disk space it
consumes and the number of times it has been run.

Permissions determine what reports and data a user can view and manage. For example, users
with permission to access data in only certain reports or certain columns can see only their
permitted subset of reports or data. Users are further restricted as to whether they can edit
reports or only view or run them.

For more information, see:

Chapter 3: Running, Viewing, and Managing Reports

Chapter 4: Creating and Editing Wizard Reports

Chapter 5: Creating and Editing SQL Reports

Administration

Administration Mode enables administrators and those with the necessary permissions to
create and modify schedules for reports and dashboards, create and manage users and roles,
system and security assets, libraries, HawkEye AP rules, Distribution filters, and associate
reports to security alerts.

For more information, see:

Chapter 7: Creating and Editing Schedules

“Associating a Report to a Security Alert”, on page 164

“Creating Alerting Rules from Templates”, on page 247

Users, Roles, and Permissions in Chapter 8, “Administering Users and Authentication” in the
Administration Guide

Creating Security Assets in Chapter 10, “Administering Assets and Monitoring Alerts” in the
Administration Guide

Command Line: Creating and Managing Users, Roles, and Permissions in Chapter 8, “Administering
Users and Authentication” in the Administration Guide.
28 Reporting Guide

Navigating HawkEye AP Console
Figure 1-3 illustrates the layout of HawkEye AP Console. Although the figure illustrates
Dashboards mode, most of these functions are available in all three modes.

Figure 1-3.: Common Interface Components

Figure 1-4 illustrates a section of another workspace. This workspace displays three widgets of
different types: a report formatted as a chart, an image that displays the example company logo,
and a text widget that displays relevant compliance text.

Figure 1-4: Three Types of Dashboard Widgets
Reporting Guide 29

Chapter 1: Getting Started
The following sections describe the common interface components:

• “Global Menu Bar”, next

• “Global Tool Bar”, on page 30

• “Navigator”, on page 31

• “Workspace”, on page 31

• “Chooser”, on page 33

• “Options Pane”, on page 35

• “Status Bar”, on page 35

Global Menu Bar

HawkEye AP Console provides the following menus regardless of mode:

File

Save

Revert to Saved

Exit from HawkEye AP Console

Edit

Change Password

Set preferences

For more information, see “Setting Preferences”, on page 35.

View

Change mode to Dashboard, Reports, or Administration

Hide or show the Options Pane, Tool Bar, and Status Bar

Refresh the current display

Help

Open HawkEye AP product documentation

Obtain build information about HawkEye AP Console; this information is useful for when talking to
Hexis Cyber Solutions Technical Support

Global Tool Bar

HawkEye AP Console provides icons for performing the following operations:

Save

Revert

Refresh

Change mode to Dashboards, Reports, or Administration

Hide or show the Options Pane
30 Reporting Guide

Navigating HawkEye AP Console
Navigator

The Navigator facilitates movement among the three modes and the items specific to each mode.
It comprises:

Mode Selector—facilitates switching among the three modes, which display different items in
the Navigator Tree.

Navigator Tree—displays all items available in the current mode. For Dashboards and Reports
modes, this tree contains a hierarchy of folders that organize the dashboards and reports. For
Administration mode, this tree organizes such items as schedules, libraries, and assets.

Navigator Action Menu—provides operations specific to Dashboards and Reports mode. For
example:

Dashboards mode—provides options to create a new dashboard or folder.

Reports mode—provides options to create a new report definition or folder.

NOTE: Administration mode does not have a Navigator Action Menu because there are no
actions that would apply to the Navigator. In Dashboard and Reports mode, the Action Menu
creates items that are accessed from the Navigator. For example, in these modes you can
create and remove folders. In the Administration mode, the items listed in the Navigator are
fixed. You cannot modify or perform actions on these items.

Workspace

The Workspace provides the primary area in which you view and manage data. The Workspace
comprises:

Header

The workspace header identifies your current location in the HawkEye AP Console. Header
values vary according to your current mode. Figure 1-3 illustrates a dashboard workspace
whose header identifies “PCI” as the name of the current dashboard.

Workspace Action Menu

The Workspace Action Menu provides operations specific to the current mode and selected
item.

Workspace Pane

The primary workspace component is the pane that displays one or more pages, each of which
contains items to be viewed or manipulated and the tools for creating and managing these items.
Workspace items and actions vary according to your current mode.

Pages

In Dashboards mode, you can create multiple pages to organize reports, alerts, and other
items by function, usage, or user access. In Reports and Administration mode, pages are
created automatically as you open different report, schedule, or library definitions for editing.
All modes display at least one page by default.

The bottom of the workspace displays tabs with the name of each page. If there are more tabs
than can fit within the display, a page-tab navigation tool displays that facilitates moving among
the pages. You can also change the relative position of a page. Additionally, in Dashboards
Reporting Guide 31

Chapter 1: Getting Started
mode, you can add and rename pages; for more information, see “Creating a Page”, on page
213.

PAGE NAVIGATION

All three modes can display multiple pages. This section describes how to find a page, change
focus to a page, and change the relative position of a page.

Changing Focus to a Page

To open a page whose name is hidden among a set of page tabs, you must first display its page
tab. To do so, you can either use the Page-Tab Scroll icons to move page-by-page to the right or
left or use the Tab List icon to move to a specific page from a list of all page names. Figure 1-5
illustrates the Page-Tab Scroll icons and Figure 1-6 illustrates the Tab List icon.

Figure 1-5: Scrolling to a Page

To scroll page-by-page

Click the right or left scroll icon.

To see available pages and move to a specific page by name

1 Click the Tab List icon.

2 Select the desired page name from the popup, as illustrated in Figure 1-6.

Figure 1-6: Moving to a Page by Name

Changing the Relative Position of a Page

To change the position of a page

Select the page tab, drag it to the desired position and release the mouse.

Click to scroll right or left.

Click here

Select desired page tab from the list

1

2

32 Reporting Guide

Navigating HawkEye AP Console
Chooser

The Chooser provides a list of items and the ability to sort them and search them in the list. The
types of items change as you change modes. For example, in Dashboards mode, the Chooser
lists all widgets that you can drag and drop into the Dashboard.

The types of Chooser items determine what you can view and manipulate in the workspace.

Dashboards mode—The items are system, exception report, and security alert widgets, report
widgets, and text and image widgets.

Reports—The items include report definitions as well as tables and views.

Administration—The items depend on the activity you are performing. For example, when you
create or edit a schedule, the items include report definitions, dashboards, and folders of
reports and dashboards.

The Chooser comprises a search field and a scroll list. You can use the search field to limit the
items that display in the scroll list. When you create a Wizard report or a schedule, the search field
also includes a scope dropdown that limits item to a specific type. In addition to limiting display to
only the desired items, you can use the Chooser sort option to change the order of display.

LIMITING DISPLAY BY SCOPE

Scope enables you to limit items by group if more than one group is available. The Chooser
provides scope during Wizard Report creation, when it enables you to scope the report
namespace. HawkEye AP uses namespaces to organize EDW data objects (tables and views).
For more information, see “Namespaces: Using a Single Report or Dashboard to Access Different
Data”, on page 43. Figure 1-7 illustrates the Wizard Report Chooser.

LIMITING DISPLAY BY TEXT SEARCH

Text search enables you to limit items by the characters in their names. Figure 1-7 illustrates the
Chooser during Wizard Report creation. If you have access to more than one namespace, you
must first select the namespace whose table or view will provide the data for your report.

In the graphic below, the user first selects the analytics.intellischema namespace. Next the
user limits Chooser display to only views that contain the text "windows" in the name.

Figure 1-7: Example of Scope and Search Text in Wizard Report Creation

NOTE: The Clear-search button displays only after you enter search text.

 Search text

Current scope

Clear-search button

Scoping the Namespace
Scope dropdown

Searching for Specific Views
Reporting Guide 33

Chapter 1: Getting Started
By default, all items within the selected scope display in the scroll list. As you enter values in the
search field, the set of displayed items reduces to only those whose names contain the current
search text.

NOTE: Names of Chooser items match even if they do not begin with the search text. The search
text can appear anywhere in the name. For example, assume the Chooser displays the following
reports:

SOX

Southern Central Firewall

OSO

Ontario

If the user enters "o" as the search text, none of the reports are removed from display because all
names contain an "o". However, if the user enters "so" as the search text, the "Ontario" report no
longer displays. Moreover, if the user enters “sox”, only the "SOX" report displays.

SORTING ITEMS

The Chooser enables ascending and descending sort by item name in all modes. However, when
you view widgets in the Dashboards Chooser or items to be scheduled in Administration mode,
the Chooser displays a second column that allows you to sort by item type.

Because Reports mode displays only one type of item at a time, the Chooser scroll list contains
only one column that identifies either the report definition or the table/view by name.

In Dashboards mode and when assigning items to a schedule, the Chooser displays the following
columns:

icons that identify the type of widget or item—primary sort defaults to this column

text that identifies the name of the widget or item

Figure 1-8 illustrates both types of sorts as used in Dashboards mode.

Figure 1-8: Sorting Items in the Dashboard Chooser

Sorting by Type Sorting by NameDescending sort icon
34 Reporting Guide

Navigating HawkEye AP Console
NOTE: For all three modes:

Sorting is case insensitive.

The sort icons do not display in the column header until you click in the header.

Although Reports mode enables sorting only by name and not also by widget type, the sorting
described below pertains to it as well.

To sort widgets

1 Click in the column header to display the sort icon; if there are two columns, click in the desired
column header.

2 Click the sort icon a second time to reverse the order of the sort.

Options Pane

The Options Pane exposes all context-sensitive operations that you can apply against the items in
your workspace. The operations differ by mode and by the type of item selected. You can hide
and show the Options Pane to maximize your workspace area or to apply options.

To open or close the Options Pane, either click the Options Pane icon above the
workspace or select Show Options from the Workspace Action Menu.

Some item types display multiple icon tabs. For example, in Dashboards mode, the dashboard as
well as its report widgets display a set of icon tabs. Figure 1-9 illustrates the tabs for a report
widget. Currently open to the SQL tab, this widget also provides tabs for Date Options, Show/
Hide columns, and Statistics. In the graphic below, the user is about to click the Statistics tab.

Figure 1-9: Icon Tabs in Options Pane

Status Bar

As illustrated in Figure 1-3, the status bar in Dashboards mode displays the status of running
reports, the name of the user currently logged into HawkEye AP Console, and the current EDW
instance. In Reports mode, the status bar also displays the total disk space consumed by the full
set of cached reports and the total number of report definitions. The status bar in Administration
mode displays the name of the user currently logged into HawkEye AP Console and the current
EDW instance.

Setting Preferences

From the Edit menu, you can set preferences. Click Preferences … to display the Preferences
dialog. There are three tabs in this dialog:

Dashboard options are closed.

Report widget options are opened.
Reporting Guide 35

Chapter 1: Getting Started
General

Reports

Set the maximum number of rows to display on each page for cached reports

Set whether the Report Wizard in Reports Mode displays both tables and views or only views

Miscellaneous

Specify whether the week begins on Sunday or Monday

Set smooth fonts to enhance display of text

Specify whether HawkEye AP Console speeds dashboard display by pre-loading pages in the
currently open dashboard

To facilitate opening each page in the current dashboard, specify how long HawkEye AP
Console should wait for you to press a key or move the mouse in HawkEye AP Console
before it begins loading the next page in the open dashboard. Keep this option set to 0
(zero) to disable the feature.

Time Zone

Select the time zones you want to display in date and time dropdowns

Export

Specify encoding and the separator character for CSV-formatted reports

Changing Your Password

From the Edit menu, you can change your password. Click Change Password … to display the
dialog box below. Note that if you’re an administrator, the system ignores what you enter for
Current Password - whatever you enter makes no difference.

Figure 1-10: Change Password Dialog

Accessing Online Help

HawkEye AP Console online help opens in a separate browser window, which organizes the
documentation by users. When you open a document in HTML format, a new window displays
with the selected document open for viewing. This window also provides links to each document
in the HawkEye AP documentation set and provides an index and search capabilities. When you
display the documentation in HTML format, you can search the entire documentation set or only a
specified document.
36 Reporting Guide

How does your data get to HawkEye AP Console?
After finding the information you need, you can close online help by clicking the Close Window
icon located in the Title Bar.

To access online help

From the menu in any HawkEye AP Console window, select Help > Contents.

HOW DOES YOUR DATA GET TO HAWKEYE AP CONSOLE?

The HawkEye AP system supports the industry's most comprehensive real-time and historical
event management capabilities. Its patented data model and compression technology facilitate
online collection and storage of massive volumes of data across an entire network. The HawkEye
AP architecture enables rapid querying of and visibility into security threats and facilitates
drilldown capability.

Figure 1-11 illustrates data flow at a very high level. The HawkEye AP system receives both
streaming and batched event data, processes and stores it, and, when appropriate sends alerts
to the HawkEye AP Console.

Figure 1-11: High-Level Event-Data Collection, Processing, and Display

As illustrated in Figure 1-11, events enter the Sensage system from external systems, such as
network devices and software applications. Events enter in one of two ways:

HawkEye APBatched—events are collected at predefined intervals from log files and other
event repositories maintained by network devices, software applications, and operating
systems. HawkEye AP components poll a data source or repository to retrieve event data and
load the data into the Event Data Warehouse (EDW). The EDW makes the event data available
to the Application Manager for report and alert management.

Streaming—events flow into the HawkEye AP system as a real-time stream from network
devices and software applications that publish the events. HawkEye AP components process
the events and raise real-time alerts when the incoming data matches pre-defined criteria.

Analysts can access security alerts and reports through HawkEye AP Console, which provides a
powerful graphic interface. Administrators can access EDW data either by using command-line
interface (CLI) utilities on a Linux system or by viewing reports and alerts through HawkEye AP
Console.
Reporting Guide 37

Chapter 1: Getting Started
For more detailed information about HawkEye AP architecture and the specific HawkEye AP
components that receive or collect data and process it, see Chapter 1: Introduction in the
Administration Guide.

REPORTING AND HAWKEYE AP ANALYTICS

HawkEye AP Analytics provides a comprehensive solution for reporting on event data collected
from all sources in your enterprise and stored in the HawkEye AP Event Data Warehouse (EDW).
Without understanding all their information systems and devices, business analysts can use the
Analytics reports provided with the HawkEye AP distribution to quickly retrieve and correlate data
from multiple log sources. In addition, without understanding the underlying raw data format,
analysts can use the IntelliSchema views provided with the HawkEye AP distribution to easily
create reports against multiple log sources.

For more information:

• Viewing reports—Chapter 2: Using Dashboards

• Creating reports—Chapter 4: Creating and Editing Wizard Reports

• Analytics Guide—Overview of HawkEye AP Analytics in Chapter 1, “Overview of HawkEye AP
Analytics” in the Analytics Guide

QUERYING AND SENSAGE SQL

The Event Data Warehouse (EDW) is a database built for and dedicated to loading, storing, and
analyzing event data. The HawkEye EDW provides Sensage SQL (SSQL), its own version of SQL,
SQL functions, and Perl functions to query event-log entries. A query is a Sensage SQL statement
that extracts event-log data from the EDW data store. The EDW also provides utilities to load
event-log entries and manage the operation of the EDW.

Typically, analysts use the Report Wizard to create reports against HawkEye AP data. Wizard
reports often meet most of your reporting needs. However there are situations that demand more
complexity than the queries generated by the Report Wizard allow. For example, you may a need
a report to perform the following operations:

include data from external files

manipulate lists of data

concatenate and truncate string data

nest queries so that the results of one query are used as the input to the next

use libraries and Perl subroutines

To create a report that takes advantage of HawkEye AP extensions to Sensage SQL, an
advanced user must create a SQL report. To create a SQL report requires entering a SQL query
directly into the report definition window. The user who creates such a report must understand
the SQL query language and the HawkEye AP extensions to the language.

Because this guide documents report creation, it documents those features of Sensage SQL
required to write a query against stored data. For more information, see the following chapters in
this guide:
38 Reporting Guide

Querying and Sensage SQL
Chapter 10: Sensage SQL

Chapter 11: SQL Functions

Chapter 12: Perl Subroutines

For more information on those features of Sensage SQL required to load and store data, see the
following chapters in the Administration Guide:

Chapter 3: Loading, Querying, and Managing the EDW

Chapter 2: Configuring and Managing HawkEye AP
Reporting Guide 39

Chapter 1: Getting Started
40 Reporting Guide

CHAPTER 2

 Using Dashboards

This chapter contains the following sections:

• “Overview”, next

• “Viewing Reports”, on page 42

• “Viewing Security Alerts”, on page 64

• “Refreshing Dashboards and Running Items”, on page 85

OVERVIEW

Dashboards provide clean and powerful access to event and system data that HawkEye AP
collects. Report and alert widgets present and illustrate the data. Typically a dashboard contains
multiple pages, each of which groups report widgets by relevance or audience. For those who
monitor correlated alerts about enterprise security data and HawkEye AP system assets, a
dashboard can also include a page or pages of alert widgets. A dashboard typically also contains
text and graphics that complement or explain the displayed data.

Figure 2-1 illustrates the Privileged Command Summary page of the PCI dashboard. As shown in
the list of folders on the left, PCI is one of the Compliance dashboards. There are also several
dashboards in the IT folder, and, as indicated by the icon to the left of Analysts folder, there are
Reporting Guide 41

Chapter 2: Using Dashboards
also dashboards specific to analysts. To document dashboard usage, this chapter examines the
example PCI dashboard in the Compliance folder and the two dashboards in the IT folder.

Figure 2-1: Example Dashboards

For information about HawkEye AP Console components common to all three modes and how to
use these components, see “Introduction to the Interface”, on page 27.

VIEWING REPORTS

This section contains the following topics:

• “About HawkEye AP Reports”, next

• “Cached Data: Making Stored Data Quickly Available”, on page 43

• “Namespaces: Using a Single Report or Dashboard to Access Different Data”, on page 43

• “Viewing and Changing Display of Report Data and Metadata”, on page 44

• “Manipulating and Expanding Report Results”, on page 51

About HawkEye AP Reports

A HawkEye AP report organizes the raw event data collected by your HawkEye AP system and
presents the data in tabular or chart format. HawkEye AP runs each report from a report definition,
which defines the data source, the manipulation and ordering of data, and data display.
42 Reporting Guide

Viewing Reports
HawkEye AP Analytics provides many ready-to-run report definitions for common types of
information systems and events. HawkEye AP Console provides tools that enable you to create
and edit your own report definitions and to edit the Analytics reports. You can develop a report
graphically through the Report Wizard, which steps you through report creation. Alternately, you
can enter HawkEye AP SQL statements directly into a query window and then graphically
manipulate report display and variables. HawkEye AP SQL is a variation of standard Structured
Query Language (SQL) that has been extended for manipulating event data.

After a report definition has been created, you can run the report manually or by a schedule.
Because running a report can be time consuming, the HawkEye AP system saves the output of a
report each time it runs as a report cache entry and makes it available for quick viewing.

Cached Data: Making Stored Data Quickly Available

As illustrated in Figure 2-1, report data can display in table or chart format. The two reports
illustrated above are actually the same report displayed in two formats. The data in both of these
widgets is identical in that it represents the results of the same query run over the same time
period and using the same interval (such as day or month or year).

Whenever a report is run, the Application Manager automatically saves the results in a report
cache. Each report cache contains data stored in the EDW for a specific time range and interval.
The saved data precludes the need to query the EDW repeatedly for the same result set. A report
cache improves access time, particularly if the query computes or otherwise manipulates the
data.

HawkEye AP reports always display data from a report cache. You typically run report definitions
on the same data set over multiple time periods and intervals. For example, to facilitate tracking
login anomalies, your site might track login data on a daily, weekly, and monthly basis. If you
discover an anomaly in today’s daily report, you can easily view cache entries for the previous
weeks and months to investigate the scope of today’s issue. If a report cache is not available to
meet your reporting needs, you can manually run the report to save the required event data in the
cache. By default, the most recent report cache entry displays. For information on how you can
view a specific cache entry for a report widget, see “Viewing and Changing the Time Range and
Namespace”, on page 51.

If a report runs frequently, such as every 15 or 30 minutes, the data you view in a report widget
may not be the most current data. A scheduled run of the report may have generated new cache
entries since you logged into the dashboard. In other words, although the most recent cache
displayed when you logged into the dashboard, a more recent cache may exist. To enable you to
view the most recent cache, HawkEye AP Console provides a Refresh option. Because a page or
dashboard can contain multiple report widgets, several of which might have a newer cache than
is currently displayed, the Refresh option enables you to specify its scope: you can refresh a
single report or all report widgets on the page or all reports on the dashboard. For more
information, see “Refreshing Dashboards and Running Items”, on page 85.

Namespaces: Using a Single Report or Dashboard to Access Different Data

HawkEye AP organizes tables and views into namespaces. A namespace is like a file-system
directory or folder, but it contains tables and views rather than files or documents. Namespaces
also behave like file system folders in the following ways:

Access to a namespace is determined by Namespace permissions associated with roles.
Reporting Guide 43

Chapter 2: Using Dashboards
Just as access to financial information on a file system is limited only to employees with
appropriate permissions, so too is access to a namespace determined by HawkEye AP-
granted permissions.

The names of the tables and views within a namespace are unique to the namespace.

Assume you store tax information on your file system in folders named for the relevant year. For
example, assume you have created folders named 2006 and 2007. Assume further that you
stored a file named Taxes below each of these folders. Although both folders contain an
identically named file, the Taxes file is unique to the folder that contains it.

Just as you can create identically named files below different file-system folders, so too can your
HawkEye AP system store identically named tables and views below different namespaces. For
example, your system might store a table named hosts in a namespace named Eastern and
also in a namespace named Western. The data in the hosts table is unique to the namespace
that contains it.

Namespaces allow HawkEye AP administrators to create identically named tables with identical
structures that store different data depending on their location. For example, the hosts table
contains information about your computer hosts on either the east or west coast. Additionally,
because access to a namespace is determined by permissions, some users might have access
only to east coast host data while others have access only to west coast data. Only the IT
department has access to all data.

To further simplify data access, you can create a single report definition that retrieves host
information from either the east or west coast namespace. The data the report returns depends
upon which namespace it runs against. Furthermore, a dashboard can be defined that contains
reports that run against identically named and structured tables in different namespaces.

Viewing and Changing Display of Report Data and Metadata

This section contains the following topics:

• “Changing Column Order”, next

• “Widening Column Display in a Report”, on page 45

• “Filtering and Sorting Report Data”, on page 46

• “Showing and Hiding Report Columns and Metadata”, on page 48

• “Changing Between Table and Chart Formats”, on page 49

• “Viewing the SQL Query and Other Properties”, on page 50
44 Reporting Guide

Viewing Reports
Changing Column Order

Figure 2-2 illustrates the process to change column order.

Figure 2-2: Changing Column Order: Illustrating the Move

The graphic above illustrates the process to reorder two columns. The data from the Event
Source column is moving into the new position but has not fully arrived yet.

Widening Column Display in a Report

Sometimes a report has more columns than can fully display. When column width is so narrow
that some header text or column data is hidden, the report indicates hidden text with three dots,
as illustrated in Figure 2-3. This figure also illustrates the sizing cursor, which allows you to expand
the width of a column.

Figure 2-3: Widening Columns

Grab & drag column header to the desired location

Data moving to new position

Widening column display

Hidden text
Reporting Guide 45

Chapter 2: Using Dashboards
NOTE:

The maximum width for a column is 1000 pixels. The number of pixels does not correspond to
an exact number of characters because HawkEye AP Console does not use fixed width fonts.

The 1000-pixel limit for column width affects reports exported to PDF as well as reports that
display in HawkEye AP Console.

To widen column display

1 Position the cursor over the column header until the sizing cursor displays, as illustrated in
Figure 2-3.

2 Click and drag the cursor until the column reaches the desired width.

Filtering and Sorting Report Data

By default, tabular reports contain all rows of the returned data set. You can filter the report to
display only the rows that interest you. The tabular report widget displays a filter row between the
column headers and the rows of data. Use this row to specify your filtering criteria.

For example, Figure 2-4 illustrates a report that is filtered on the first and third columns. It also
sorts on the third column.

Figure 2-4: Filtering Report Data

NOTE:

After you enter the filter criteria, press ENTER to activate the filter.

Data matches the filtering criteria if the filter text appears anywhere in the data value. As
illustrated in Figure 2-4, only information systems that contain “hoc” in their name are
displayed. For more information on search criteria, see “Limiting Display by Text Search”, on
page 33.

Descending sortFilter criteria

Clear filterFilter row
46 Reporting Guide

Viewing Reports
In addition to entering the search text, you can enter criteria by which to exclude data from the
result set. You can modify the search by using the following operators:

Table 2-1: Filter Operators

You can use the AND and OR keywords to filter the data using multiple criteria by referencing the
current column name as $C. The following are valid examples of filtering using multiple criteria:

$C=”abc” OR $C=”def” (equals abc or def)

$C>5 AND $C<20 (greater than 5 and less than 20)

NOTE: In general, text values must appear within quotes and numeric values must not appear
within quotes. The one exception is when you enter a text value to filter for data containing a given
value, as shown in the first example in Table 2-1.

Operator Meaning Examples

=

equal
(equal sign can be omitted)

• abc (Contains abc. The equals sign and quotes may be
omitted in this syntax)

• =”abc” (equals abc)

• 17 (equals 17)

• =17 (equals 17)

• =”” (empty)

<>
or
!= not equal

• <>“abc” (does not equal abc)

• !=“abc” (does not equal abc)

• <>5 (does not equal 5)

• !=5 (does not equal 5)

• !=”” (not empty)

> greater than >15 (greater than 15)

>= greater than or equal >=15 (greater than or equal to 15)

< less than <15 (less than 15)

<= less than or equal <=15 (less than or equal to 15)

like The LIKE comparison operator
yields true if the value matches
a particular pattern of
characters. The matching
pattern can contain explicit
characters and special
wildcard characters. The
percent sign (%) is a wildcard
that matches zero or more
characters of any kind; an
underscore matches any single
character in a particular
position within the pattern.

• like”%abc%” (contains abc)

• like”abc%” (begins with abc)

• like“%abc”X”%” (contains abc”X”)

not like Negates the like
comparison operators

not like “%abc%” (does not contain abc)
Reporting Guide 47

Chapter 2: Using Dashboards
To filter tabular report data

1 In the filtering row, click the cell associated with the column whose values you want to limit.

2 Type your filter text in the cell, and press ENTER.

The report displays only those rows that contain the matched data.

3 To add filtering criteria for additional columns, repeat Step 1 and Step 2 for each column.

If you enter filter criteria for more than one column, all criteria is evaluated. In other words, the
criteria is evaluated with the AND keyword.

To clear the filter

To remove all filters, click the icon.

To remove a subset of filters, delete the text from the desired cell or cells in the filtering row and press
ENTER.

To sort data in a column

To sort a column, click its name in the column header row. The ascending icon displays next to the
header name.

To change sort order to descending, click the header a second time. The descending icon displays.

To remove sorting, click the header a third time.

NOTE: Sorting an column containing an IP address or hostname results in only in an
alphabetical search and may not produce the expected result.

Showing and Hiding Report Columns and Metadata

If a tabular report displays columns whose data is not relevant to your investigation, you can hide
those columns from display. Hiding unnecessary columns provides more space for the data that
interests you. Figure 2-5 illustrates the Show tab, which allows you to remove specific columns
from display.

In addition to displaying all columns in the result set, a report widget may display metadata.
Metadata provides information about the report itself. This information includes a text description
of the report, its namespace, and the date criteria that determines its time period.
48 Reporting Guide

Viewing Reports
From the Show tab you can also increase the data area by hiding information about the report,
such as its description or namespace, and can toggle between table and chart format.

Figure 2-5: Showing and Hiding Tabular Report Information

To remove a column or metadata item from display, deselect its property.

NOTE: When you show and hide report columns and metadata, only your view of the data
changes. Other users viewing the same dashboard do not see these changes.

Changing Between Table and Chart Formats

By default, every report displays as a table. If the report’s creator defined a chart format for the
report, the report can display in either table or chart format. Some dashboard pages may contain
two copies of the same report, one displayed as a chart and the other as a table.

If your dashboard page displays a single copy of a report widget that has been configured for
chart as well as table display, you can use the Options Pane to toggle its display format.

As illustrated in Figure 2-5, when a report has been configured for both chart and table display,
the Show tab enables you to toggle between the two display types. The name of the button
changes to display the current option. When a report has been configured only for table display,
this toggle field is disabled. It displays only the word “Table”, as shown below.

Although HawkEye AP provides several styles of bar and column chart options, only one chart
style is available in a report widget. If you select Chart from the Table dropdown, the widget
displays the chart style that was configured for the report in its definition. In other words, if the

Show tab

Change
between table
& chart format

Show or hide
metadata

Show or hide
columns
Reporting Guide 49

Chapter 2: Using Dashboards
current report has been configured to include bar chart display, the dropdown allows you to
toggle between these formats. Figure 2-6 illustrates the bar-chart version of the tabular report
shown in Figure 2-5.

Figure 2-6: Bar Chart Display

When a report displays as a chart, you have the option of investigating data related to a specific
data point in the chart. For more information, see “Investigating Data from a Line Chart”, on page
60.

NOTE: When you toggle between table and chart view, only your view of the data changes. Other
users viewing the same dashboard do not see these changes.

Viewing the SQL Query and Other Properties

The SQL tab on the Options Pane displays the SQL query that generated the report data set. This
tab also displays:

who and when the report definition was created

who and when the report definition was last modified

Additionally, this tab includes the View Search Criteria button. Click this button to display the
following information about the current cache entry:

Date period and time zone over which it was run

Column values that the user specified at run time

This information is useful if the report provided the run-time user with parameters to limit the
report results. In other words, if the user limited the result set, you can click this button to view
the values used to limit the results.

Namespace in which the report was run
50 Reporting Guide

Viewing Reports
This information is particularly useful if a single report runs in more than one namespace. For
more information, see “Namespaces: Using a Single Report or Dashboard to Access Different
Data”, on page 43

Manipulating and Expanding Report Results

This section contains the following topics:

• “Viewing and Changing the Time Range and Namespace”, next

• “Calculating Report Data”, on page 53

• “Opening an Associated Report”, on page 54

• “Browsing to Other Reports”, on page 57

• “Investigating Data from a Line Chart”, on page 60

Viewing and Changing the Time Range and Namespace

Every time a dashboard runs, a new cache entry is generated for every report the dashboard
displays. When you open a dashboard and view a report, it displays the cache entry created
when the dashboard ran last. If a report displays in more than one dashboard, and the different
dashboards run at different intervals, the report will have a cache entry for each of those intervals.
Additionally, if you or others run the report manually, the report will have a cache entry for each of
these manual runs. Each of these manually run cache entries identifies the user who created it
and the date created.

Assume one dashboard runs daily and another weekly, and that they both contain the same
report. Daily and weekly cache entries will be available for that report. When you open the daily
dashboard, the latest daily cache entry displays. When you open the weekly dashboard, the
latest weekly cache entry displays. To switch between these cache entries, or to display an earlier
cache for either interval or to merge several cache entries into a single result set, open the Date
Options tab for the report widget.

As illustrated in Figure 2-7, if a report has been run over more than one date interval, the Date
Period dropdown displays all cached intervals. If only one interval is available, this field displays
the date period as a text label rather than in a dropdown.

NOTE: If a report has been run in more than one namespace, the Namespace dropdown
contains all of those namespaces. You can use this dropdown to switch namespaces.
Reporting Guide 51

Chapter 2: Using Dashboards
The field below the Namespace and Date Period dropdowns organizes cache entries by date
and time for the current date period. The most recent entries display at the top.

Figure 2-7: Date Options Tab:

If a report has multiple cache entries, you can select contiguous entries to display as a single
result set. Select one or more cache entries and click Apply to display the selected entries. To
select multiple entries, select the first entry, then SHIFT-CLICK as you select the last entry

NOTE:

You cannot combine cache entries if:

They represent absolute date ranges. In other words, you can combine daily cache entries into weekly
reports, and weekly cache entries into monthly reports, but you cannot combine an absolute date
range that represents the first week of September with one that represents the second week of
September.

The cache entries represent different time zones. In other words, you can combine weekly cache
entries into monthly reports only if all cache entries represent the same time zone.

NOTE: This field is used only
by report developers to modify
date criteria or namespace or

Optionally, select a different
namespace from the dropdown.

Select the desired date
period from the dropdown.

Select the desired cache entry
or entries from the list.

Click Apply.3

2

1

Identifies
user that ran
report &
date of run
52 Reporting Guide

Viewing Reports
NOTE: Merging cache entries fails if Daylight Saving Time changes in any of the entries. In
other words, you can combine weekly cache entries into monthly reports, but if Daylight
Savings Time changed during one of the weekly entries, the merger fails.

The Date Periods dropdown displays all cache entries available at the time you opened the
Options Pane. To display any cache entry created since you opened the dropdown, you must
refresh the dashboard. For more information, see “Refreshing Dashboards and Running
Items”, on page 85.

When you change or combine cache entries, only your view of the data changes. Other users
viewing the same dashboard do not see these changes.

If a report has run in more than one namespace, you can display cache entrie(s) for another
namespace. Select the desired namespace from the Namespace dropdown.

Calculating Report Data

For a tabular report widget, you can specify calculation of values in numeric columns. These
calculations include totaling values, identifying the records with the minimum and maximum
values, and calculating the average value in each numeric column.

Calculations are based on the current result set, regardless of the records currently displayed.
For example, assume a report widget currently displays only 10 rows of a 100-row result set. If
you set the report to display totals for the numeric columns, the total values displayed for those
columns are based on all values in the result set.

Figure 2-8 illustrates the Statistics tab for a report widget. This tab enables calculating data. This
figure also illustrates the result of setting all statistics options on a report with two numeric
columns.

Figure 2-8: Calculating Report Data
Reporting Guide 53

Chapter 2: Using Dashboards
The Statistics tab provides the calculation options shown in the table below.

Opening an Associated Report

Often when you view data in a tabular report, you want to view additional information about one or
more of the displayed rows. Tabular report widgets enable you to select specific values in a
column and open associated report(s) on those values. The data you select to investigate is
automatically made available as criteria when you run the associated report.

Figure 2-9 illustrates a user linking from three rows in one report to a choice of associated reports.

Figure 2-9: Opening An Associated Report

As shown above, a user has selected data in three rows of the Event Description column and
has right-clicked to display the popup menu. From the popup, the user has clicked Associated
Reports to display the selection of linked reports. The report’s creator determined that these
reports would be useful to those who view this report and explicitly associated them to this report.

After you select the desired report, the Run Report dialog displays, as illustrated in Figure 2-10.
All three values selected from the source report display in the dropdown of the associated report.

Option Description

Total For each numeric column, display the sum of its values for the entire result set in a
row labeled "Total".

Average For each numeric column, display the average of its values for the entire result set in
a row labeled "Average"

Minimum Display the minimum of each column's value over the entire result set in a row
labeled "Min". For example, the minimum of a text column is determined
alphabetically, IP address values are evaluated as IP addresses, and numeric values
are determined numerically.

Maximum Display the maximum of each column's value over the entire result set in a row
labeled "Max".
54 Reporting Guide

Viewing Reports
You select the desired value from the dropdown, as illustrated below. Then click Run to run the
report

Figure 2-10: Running the Associated Report on Selected Data

NOTE:

From the Run dialog, you can specify a new time range or keep the default one.

In the example above, the user selected values from the same column (Event Description) that
displays in the Run dialog. If the column you are investigating does not display by default, you
can select it from the left dropdown. Figure 2-14 illustrates this process.

If the Run dialog displays additional criteria columns, you can either specify relevant values for
them or delete them. Figure 2-19 illustrates this process.
Reporting Guide 55

Chapter 2: Using Dashboards
Figure 2-11 illustrates the results of running the associated reports with one of the values in the
Event Description dropdown.

Figure 2-11: Associated Report Results

NOTE: HawkEye AP Console opens a new page in the dashboard to display the associated
report.

To run an associated or other report

1 In a column of the source report, select desired row(s) from a single column.

2 Right-click to display the popup menu.

3 Click Associated Reports to display the full list of associated reports.

The first three steps are illustrated in Figure 2-9.

4 Select the desired report from the list.

The Run Report dialog displays.

This step is illustrated in Figure 2-10.

5 If you have selected more than one value from the source report, select one to run first from the
column dropdown.

6 If desired, enter a new date period, and click Run.
56 Reporting Guide

Viewing Reports
Browsing to Other Reports

Not all reports have other reports associated to them. And not all associated reports may meet
your investigation needs. HawkEye AP Console also enables you to investigate data from the
current report in any other report in the system for which you have access permission.

Below the link to Associated Reports is a link to Browse all Reports...., as illustrated in Figure 2-
12. As with an associated report, the data you select in the source report displays in the report
you select by browsing.

Figure 2-12: Using the Browse All Reports Option

From the Browse Reports dialog, select the desired report. Figure 2-13 illustrates this process.

Figure 2-13: Selecting a Report for Browsing
Reporting Guide 57

Chapter 2: Using Dashboards
Figure 2-14 illustrates the Run dialog that displays for the selected report. The example report
displays one Column Criteria field, which automatically contains the value you selected in the
source report. To make the run meaningful, select the relevant column from the dropdown on the
left. Because the data illustrated in Figure 2-13 comes from the Event Description column, the
user selects this column in the example illustrated below.

Figure 2-14: Selecting the Desired Column

Selected value displays

Select the
appropriate
column.
58 Reporting Guide

Viewing Reports
Figure 2-15 illustrates the results of running the associated reports with one of the values in the
Event Description dropdown.

Figure 2-15: Browse Reports Results

NOTE: HawkEye AP Console opens a new page in the dashboard to display the associated
report.
Reporting Guide 59

Chapter 2: Using Dashboards
Investigating Data from a Line Chart

“Changing Between Table and Chart Formats”, on page 49 illustrates a report that displays as a
bar chart. Figure 2-16 illustrates a different report, which displays as a line chart and is part of the
IT dashboard.

Figure 2-16: Line Chart Display of a Different Report

A line chart is particularly useful for analyzing data trends; it graphically displays how data
changes over time. The chart in the example above graphically illustrates the number of snare
events received by a specified computer over several days. If one data point interests you, you
can investigate it further by double-clicking it.

For example, the data in the chart above spikes on September 26. To learn more about this data
point, double click it. The dashboard opens a new page that displays information for the selected
data point in tabular format. From the tabular report you can open an associated report or browse
60 Reporting Guide

Viewing Reports
to any report on your system to which you have access. Figure 2-17 illustrates the tabular report
that displays for the September 26 data point.

Figure 2-17: Investigating a Data Point—Displaying the Tabular Report

A single row represents
the selected data point.

The tabular report
opens in a new page.
Reporting Guide 61

Chapter 2: Using Dashboards
To learn more about the data point, select a displayed value and right click on it to display the
popup menu. Figure 2-18 illustrates the user selecting an associated report.

Figure 2-18: Investigating a Data Point—Opening an Associated Report

As illustrated in Figure 2-18, the user has chosen the User Login Details on Windows report to
open. Figure 2-19 illustrates the Run dialog that displays. In this example, the Run dialog displays
62 Reporting Guide

Viewing Reports
more than one parameter. The value the user selected from the source report displays in all three
parameters. The value is relevant only to the Information System parameter.

Figure 2-19: Investigating a Data Point—Specifying Values in the Run Dialog

:

To further the investigation, the user has the following options before clicking Run:

Specify values for the other two parameters—enter an appropriate value for the Event
Description and Event Source parameters.

Select a different column for the other parameters—click the dropdown and select a different
column; then enter a relevant value for it.

Delete the unwanted parameters—click the icon next to the unwanted parameter.

Option 2: Click the
dropdown to select
a different column
and enter a relevant
value for it.

Option 3: Click
to delete the
parameter.

Option 1: Enter
relevant values for
the other two
parameters.
Reporting Guide 63

Chapter 2: Using Dashboards
After the user sets the Run dialog as desired and clicks Run, the associated report displays on a
new page, as illustrated in Figure 2-20.

Figure 2-20: Investigating a Data Point—Viewing Associated Results

VIEWING SECURITY ALERTS

This section includes the following topics:

• “Background”, next

• “About HawkEye AP Security Alerts”, on page 66

• “Security Alerts: Working with the Asset Tree”, on page 67

• “Security Alerts: Working with the Alerts Table”, on page 68

• “Viewing the Information in a Security Alert ”, on page 68

• “Launching Associated Reports”, on page 69

• “Understanding and Using Threat and Risk Views”, on page 71

• “Sorting Alert Data”, on page 76

• “Widening Column Display in an Alert Widget”, on page 77

• “Filtering Alert Data”, on page 77

• “Security Alerts: Using the Alert Player”, on page 78

• “Security Alerts: Understanding the Alerting Rule that Raised the Alert”, on page 83

• “Viewing Exception Alerts”, on page 84
64 Reporting Guide

Viewing Security Alerts
Background

A HawkEye AP deployment processes event data from a variety of hardware and software
systems. These sources typically create logs of their activities and save them in a variety of
formats. Figure 2-21 illustrates the data flow from event sources to a HawkEye AP Console
dashboard that displays the alerts triggered from the data.

Figure 2-21 Real-Time Event Data Flow

As shown in Figure 2-21, event data arrives from various event sources to the HawkEye AP Real-
Time engine and to the Collector. Some of this event data arrives through syslog-ng. The
Collector uses a PTL (Parse, Transform, Load) file to parse the data for storage in the EDW. The
Real-Time engine uses parsing rules to parse the data for analysis and alerting rules to raise
alerts when the data meets specified conditions. The Real-Time engine sends alerts and their
contributing events to HawkEye AP Console where analysts use the Security Alerts Widget and
the Alert Player to view them.

In addition to the parsing rules and alerting rules delivered with the product, HawkEye AP
provides alerting rule templates that enable analysts to create their own alerting rules. Analysts
can easily configure these rules to their specific needs.

As illustrated above, analysts use HawkEye AP Console to:

view alerts in the Security Alerts widget

For more information, see:
Reporting Guide 65

Chapter 2: Using Dashboards
“About HawkEye AP Security Alerts”, next

“Security Alerts: Working with the Asset Tree”, on page 67

“Security Alerts: Working with the Alerts Table”, on page 68

“Viewing the Information in a Security Alert ”, on page 68

“Understanding and Using Threat and Risk Views”, on page 71

“Sorting Alert Data”, on page 76

“Widening Column Display in an Alert Widget”, on page 77

“Acknowledging Viewed Alerts”, on page 77

“Filtering Alert Data”, on page 77

open reports that allow further investigation of activity highlighted in alert(s)

For more information, see:

“Launching Associated Reports”, on page 69

view events that contributed to an alert in the Alert Player

For more information, see:

“Security Alerts: Using the Alert Player”, on page 78

create new alerting rules from Alerting Rule Templates

For more information, see:

Chapter 8: Creating Alerting Rules from Templates

About HawkEye AP Security Alerts

Assume your job requires you to monitor security alerts about enterprise security assets raised by
the HawkEye AP Real-Time system. You can use the Security Alerts widget in a dashboard to
view these alerts.

NOTE: Dashboards can also include widgets that display two other types of alert information.
Dashboard widgets can display the following types of alerts:

Security Alerts—display alerts about Enterprise security assets; documented in this section

System Alerts—display alerts raised by HawkEye AP system assets and source-health
failures; documented in Chapter 10: Administering Assets and Monitoring Alerts in the
Administration Guide

Exception Alerts—display alerts generated by an exception schedule when scheduled
report(s) return one or more rows; documented in “Viewing Exception Alerts”, on page 84
66 Reporting Guide

Viewing Security Alerts
Figure 2-22 illustrates an example Alerts dashboard that contains security alerts for several
enterprise assets. Two of these assets display a red octagon, which indicates a high threat level.

Figure 2-22: Dashboard Display of Security Alerts

Figure 2-22 illustrates the Security Alerts widget. On the left are assets delivered with HawkEye AP
and defined by the site administrator. On the right are the alerts themselves.

Security Alerts: Working with the Asset Tree

By default, all security alerts display in a single table in the Security Alerts widget. To make alert
viewing more meaningful and precise, HawkEye AP recommends that your site administrator
define an IP Range asset or User List asset for each server and user that you want to track. To
make alert viewing even more meaningful, your site administrator can organize your IP Range
assets and User List assets into Asset Groups. Whenever an alert is raised against one of your
defined assets, the alert displays below the specific asset group to which the asset belongs. For
information about how to create the assets in HawkEye AP Console, see Chapter 10:
Administering Assets and Monitoring Alerts in the Administration Guide.

The Asset Tree on the left of the Security Alerts widget displays all assets configured for your
system. The following assets in this tree are permanent and exist on all HawkEye AP systems:

Enterprise Security Assets—contains customer-defined assets and security alerts raised
against them; although this asset is permanent, you can change its name

Default—contains security alerts against assets that have not been defined as assets in
HawkEye AP

The table below illustrates the three types of assets that display in the tree and their associated
icons.
Reporting Guide 67

Chapter 2: Using Dashboards
Status icons in the Security Alerts widget quickly indicate the level of threats and risks to assets
that you want secured in your enterprise. Even when the asset trees are collapsed, these icons
clearly indicate which alerts you should be monitoring.

For example, if a red octagon displays before an asset in the tree, you know immediately that
there is a problem with one or more of your organization’s assets. A red octagon that displays for
a high-level asset indicates that one of that asset’s children has a high-level alert. You can expand
the tree to drill down to the actual asset against which the alert was raised.

Figure 2-22 illustrates a red octagon at the highest level, Enterprise Security Assets, and for a
child asset (IT group), and its child asset (DB Server). For more information about the status
icons, see “Understanding and Using Threat and Risk Views”, on page 71.

Security Alerts: Working with the Alerts Table

The alerts table, which displays to the right of the asset tree, displays alerts raised at your site.
The alerts are categorized by the assets defined at your site. An alert for which there is no defined
asset displays in the Default asset group.

When you select an asset in the tree, the alerts table lists only the alerts raised against that asset.
When you select an asset group, the table lists the alerts raised against all assets in the group.

Viewing the Information in a Security Alert

The Security Alerts table includes the following information for each security alert:

Acknowledged—a checkbox indicates whether the alert has already been viewed; for more
information, see “Acknowledging Viewed Alerts”, on page 77

Timestamp—the time the alert was raised

Name—the alerting rule that generated the alert

Source IP address and source port—identified by the alert

Destination IP address and destination port— identified by the alert

Source and destination users—identified by the alert

ID—primary type of the raising rule's event

Asset
Icon

Meaning

Asset Group—expand the group to display the assets and additional groups it contains.
Figure 2-22 illustrates several asset groups, including PCI Assets and Mission Critical Assets.

IP Range—identified by a single IP address or a range of IP addresses
Figure 2-22 illustrates the PCI Assets and IT Assets groups opened to display several IP-
range assets

User List—identified by a user name
Figure 2-22 illustrates one user-list asset, defined for Mission Critical Assets.
68 Reporting Guide

Viewing Security Alerts
This field was used by legacy Parser and Correlator rules and has no special meaning for alerts
triggered by the HawkEye AP Event Processing Language.

SubID—secondary type of the raising rule's event

This field was used by legacy Parser and Correlator rules and has no special meaning for alerts
triggered by the HawkEye AP Event Processing Language.

priority—the threat of the alert as set by the rule or report that raised the alert

reference number—unique identifier for the security alert

Launching Associated Reports

The Security Alerts widget enables you to launch associated reports to investigate element(s) of
an interesting alert. You launch associated reports by selecting and right-clicking one or more
values in one of six columns in the Security Alerts widget: Src IP, Dst IP, Src User, Dst User, Src
Port, and Dst Port. Figure 2-23 illustrates launching an associated report on two source users
(vijay and sophia) in an alert triggered by the User ran useradd using sudo rule.

To launch the report, right-click the desired cell(s) in one column and select the desired report
from options provided.

Figure 2-23: Launching an Associated Report

Figure 2-23 illustrates a popup menu that offers a single associated report. This report, whose title
indicates that it is specific to the Src User column, is a Wizard report created by an analyst at our
example site.

NOTE: When you associate a report to an alert, Wizard reports serve the purpose better than SQL
reports because the column-criteria fields in a Wizard report are much more flexible than those in
a SQL report. For information on the limitations of SQL report criteria fields, see “Defining
Parameters for an Associated Report”, on page 194.
Reporting Guide 69

Chapter 2: Using Dashboards
After you select the desired report, its Run dialog displays as illustrated in Figure 2-24.

Figure 2-24: Run Dialog for Associated Report

If the selected report displays more than one column-criteria field, your selected column
value(s) from the alert automatically display in all column-criteria fields. You can remove each
irrelevant row by clicking the icon.

If the selected report displays only one column-criteria field, your selected column value(s)
from the alert automatically display in that field.

If you selected more than one value from the alert, all values from the selected column automatically
display in the column-criteria value field. As illustrated above, you can use the value dropdown to select
the desired value for each report run.

If the column field represents a different column from the one you have selected or you wish to
investigate a different column from the one selected, you can select the desired column from the
column dropdown.

If you want to investigate more than the one column, you can add criteria row(s) by clicking the icon.

If desired, you can change the date period and time zone. When the values are correct, click Run.
70 Reporting Guide

Viewing Security Alerts
As illustrated in Figure 2-25, the report displays on a new page in the same dashboard as the
alerts. The report contains only rows relevant to the selected column value.

Figure 2-25: Display of Associated Report

HawkEye AP Console automatically creates a new dashboard page to display the associated
report, as illustrated above.

Understanding and Using Threat and Risk Views

This section covers the following topics:

• “Background”, next

• “Understanding Threat and Risk Views”, on page 73

• “Using Threat View”, on page 75

• “Using Risk View”, on page 75

Background

As described in “Security Alerts: Working with the Asset Tree”, on page 67, the asset tree displays
colored status icons that indicate the level of the security threat or risk for specific assets and their
child assets.

By default, the asset tree displays Threat view, which indicates threat level based upon the
priority of the parsing and alerting rules that triggered the alert. You can easily toggle display to
Risk view, which indicates threat level based upon the priority level of the asset as well as the
priority of the rules that triggered the alert.
Reporting Guide 71

Chapter 2: Using Dashboards
Each rule that HawkEye AP delivers has a pre-set priority. Typically the priority is set low. Figure 2-
26 illustrates the Priority column for an alert table whose rules were triggered by two different
rules. One has a priority of 5.0, while the other rule a priority of 1.0.

Figure 2-26: Priority in Threat View

As noted earlier, a high-priority alert causes a red octagon to display in the Asset Tree. As
illustrated above by a red circle, a numeric priority level also displays next to each asset’s name.
In the example above, the DB Server asset displays alerts whose rules had a priority of 5.0 and
1.0. The value 5 displays within parentheses next to the asset name. This number does not reflect
the number of alerts triggered for the asset. Instead, it indicates the highest priority alert for the
asset. The parent asset, IT group, also indicates the highest priority triggered for all of its child
assets.

NOTE:

HawkEye AP parsing and alerting rules set a default priority for each alert.

The parsing and alerting rules that HawkEye AP provides set the priority of security alerts
individually. HawkEye AP expects each customer to change the priority of specific rules to fit
their environments and businesses. Customers should increase this default priority for
important alerts that are likely to occur and decrease the priority for alerts that are unimportant
to their businesses. Before modifying alert priorities, consider your actual deployment
characteristics, such as the number and type of IDs and firewalls. You need to consider varying
volumes of alert messages and potentially misleading inputs.

A developer can modify HawkEye AP alerting rule templates to enable analysts to set a specific
priority for individual alerts.

Typically all the alerting rules that you create from a single template display the same priority.
This is because all rules created from the same template receive their data from the same
parsing rule. However, should your site determine that individual alerting rules should have
different priority settings, a developer can modify the alerting rule-template code to enable
users to set priority on a rule-by-rule basis.

For example, assume you create two alerting rules from the Unix su Substring Match Rule.
Each of your rules matches a different string. Your site considers one string match to have
significantly higher priority than the other. One of your developers can modify the template for
the Unix su Substring Match Rule so that your analysts can set priority individually for the
different rules that they create from the template.

For more information on modifying parsing rules, alerting rules, and alerting rule templates, see
the HawkEye Event Processing Language Developer Guide.
72 Reporting Guide

Viewing Security Alerts
Understanding Threat and Risk Views

Figure 2-26 illustrates the default display of the Security Alerts widget. The colored status icons and
numeric priority values all reflect the settings displayed for Threat view. If you do nothing but
select Risk view from the dropdown, the display changes considerably. Figure 2-27 illustrates the
display of the same alert table but with Risk view selected.

Figure 2-27: Priority in Risk View

As illustrated above, an asset that had displayed a green circle icon in Threat view now displays a
yellow triangle in Risk view. Additionally, even though the Priority column displays the same alert
priority values, the values displayed within parentheses beside many assets have now increased
considerably.

When you switch your view of the asset tree between Threat and Risk views, status icons and
numeric values reflect priorities differently:

Threat view—displays icons and numeric values based solely on the priority set in the rules
that raise the alerts.

Risk view—displays icons and numeric values based on the priority of alerts multiplied by the
value of each asset as specified by your enterprise for the assets.

The table below lists the available priority values, their text equivalents, and their significance.

Priori-
ty

Meaning Denotes

1 normal no problem

2 error an error condition rather than a threat level

3 warning a low threat level

4 alert a serious threat level

5 critical the highest threat level
Reporting Guide 73

Chapter 2: Using Dashboards
Figure 2-28 illustrates the Security Alerts widget in Threat view.

Figure 2-28: Security Alerts Widget in Threat View

A red octagon indicates the asset and its child assets have associated alerts with serious threat
or risk.

A yellow triangle indicates the asset and its child assets have associated alerts with moderate
threat or risk.

A green circle indicates the asset and its child assets have no alerts in Threat view and no alerts
or only ones with very low risk in the Risk view.

Threat is based solely on the priority of alerts (range 1 to 5) raised against the asset or its child
assets. If multiple alerts are raised against an asset and the alerts have different priorities, the
asset's threat level represents the alert with the highest priority.

Use the View Assets By dropdown (located at the top of the asset tree) to switch between Threat
and Risk views. Figure 2-29 illustrates the Security Alerts widget in Risk view.

Figure 2-29: Security Alerts Widget in Risk View

HawkEye AP Real-Time bases Risk on the priority of alerts as well as the value of the asset (range
0 to 5). The alerts widget calculates and displays risk differently for leaf assets and for asset
groups:

For a leaf asset, the risk level is the asset's value multiplied by the priority of its alerts. If multiple
alerts are raised against an asset and the alerts have different priorities, the risk level is the
asset's value multiplied by the highest-priority alert.

Therefore, risk values have a range of 0 to 25 (multiplying alert priority, in the range 1 to 5, by
the asset value in the range 0 to 5). In the example above, the root asset in the Mission Critical
asset group displays a yellow triangle and the value 5 within parentheses. In Threat view, it

Top-level node displays the highest threat
found anywhere in the asset tree

Highest threat within a group
displays by the asset group

Round green icons indicate no
alerts for the assets in Threat view

Threatened asset displays threat icon

Use the View Assets By dropdown to switch between views.

A green circle in Threat
view becomes a yellow

A red octagon in Threat view
remains a red octagon in
74 Reporting Guide

Viewing Security Alerts
displayed a green circle and the value 1 within parentheses. The increased risk that the triangle
and numeric value indicate reflect the value of the root asset. The priority set by the rule has not
changed.

For information about setting an asset's value, see Chapter 10: Administering Assets and
Monitoring Alerts in the Administration Guide.

For group assets, the risk level is the same as that of its highest risk child asset.

NOTE: The ranking of assets by risk can differ from their ranking by threat. For example, if one
server is ranked a lower risk than a sibling server, their associated icons will differ in Risk view. In
the Threat view, however, which ignores asset value, the two assets display the same icon and
numeric value.

Using Threat View

Threat is based solely on the priority of alerts raised against the asset or its child assets. The
higher the priority of an alert as set by its parsing or alerting rule, the higher the threat indicated
for it. For example, one parsing rule might assign a high priority to an alert that indicates an
intrusion on a security server and another parsing rule might assign a low priority to an alert that
indicates failed logons.

The table below describes threat levels, based on alert priority.

The Security Alerts widget computes and displays the highest priority alert raised against an IP
List or User asset. The browser computes and displays the threat to an asset group as the highest
threat of its child assets.

Using Risk View

The higher the value placed on one asset over another, the higher the risk posed by alerts with
the same priority. For example, a failed password attempt on your payroll system may pose more
of risk than a failed password attempt on your email system.

The table below describes risk levels based on alert priority and asset value.

Status
Icon

Threat
Level

Significance

5 denotes the highest threat level

4 denotes a serious threat level

3 denotes a low threat level

2 denotes an error condition rather
than a threat level

1 denotes a possible threat

no alerts

Status
Icon

Significance

denotes the highest levels of risk
Reporting Guide 75

Chapter 2: Using Dashboards
The Security Alerts widget displays the risk to an asset group as the highest displayed risk of its
child assets.

Sorting Alert Data

By default, alerts are listed in the order they are raised. You can change the order on one or more
columns. For example, the alerts illustrated in Figure 2-30 are sorted on Priority as the primary
column and Source IP as the secondary column. Sorting on both columns displays the source IP
addresses grouped by priority. Within each group of IP addresses, alerts are sorted in the order
they were raised.

Figure 2-30: Sorting and Widening Columns

The direction of the sort triangle indicates whether the order is ascending or descending.
Columns whose headings do not display a triangle are listed in the order they were raised.

To sort alerts based on data in a single column

1 Click the column header.

The alerts are sorted in the ascending order of the values in that column.

2 Click the column header again.

The alerts are sorted in the opposite, descending order.

3 Click the column a third time

The alerts display in ascending order.

denotes moderate levels of risk

denotes no alerts or alerts on assets with no value.
TIP: To make the Risk view as meaningful as possible, assign
some value to all assets.

Status
Icon

Significance

Descending sortWidening column display

Hidden text

Ascending sort

Acknowledged rows
76 Reporting Guide

Viewing Security Alerts
To sort alerts based on data in several columns

1 Click the column header of your primary-sort column.

If you want the primary-sort column to be in descending order, click the column header again.

2 Hold CTRL and click the column header of your secondary-sort column.

To sort the secondary-sort column in descending order, CTRL+CLICK the column header again.

3 To sort on additional columns, repeat Step 2.

Widening Column Display in an Alert Widget

Sometimes an alert table has more columns than can fully display. When column width is so
narrow that some header text or column data is hidden, the alert table indicates hidden text with
three dots, as illustrated in Figure 2-30.

To widen column display

1 Position the cursor over the column header until the sizing cursor displays, as illustrated in
Figure 2-30.

2 Click and drag the cursor until the column reaches the desired width.

Acknowledging Viewed Alerts

The first column of every alert widget is the unnamed Acknowledged column. This column
displays a select box for each row. Click the select box of desired row(s) to indicate that you have
viewed the alert. The display of an acknowledged row changes in the following ways:

The text is greyed.

A line is drawn through the text.

The row moves to the bottom of the alert-widget table (unless the rows are sorted, as illustrated
in Figure 2-30).

NOTE: To return an acknowledged row to unacknowledged status, click its select box. The row
returns to its original location without the line through the text and without greyed text.

Filtering Alert Data

By default, HawkEye AP clears the alerts table hourly of all but the 300 most recent alerts, and
every eight days it clears those alerts that have displayed for those eight days. Although alerts
disappear from display after the interface has been refreshed, HawkEye AP stores them in the
EDW.

NOTE: The values above are configurable; for more information, contact Hexis Cyber Solutions
Technical Support.

You can filter the alerts to display only those alerts that interest you. The alert table displays a filter
row between the column headers and the list of alerts. Use this row to specify your filtering
criteria.
Reporting Guide 77

Chapter 2: Using Dashboards
For example, the alerts table illustrated Figure 2-31 shows only alerts where the Source Port
column contains the value “58”.

Figure 2-31: Filtering Alert Data

The filtering row is colored yellow when filtering has been specified. The color informs you that
the alerts table is displaying a subset of alerts. The filtering row is colored grey when the alerts
table is not filtered.

To filter alerts data

1 Click the cell in the filtering row below the column header for which you want to specify a
criterion.

The cell becomes shaded blue to indicate that you selected the cell.

2 Type text in the cell, and press ENTER.

The table displays only alerts that match the criterion in the column you specified. In addition,
the filtering row becomes shaded yellow and the Clear Filter button becomes enabled.

3 To add filtering criteria for additional columns, repeat Step 1 and Step 2.

To clear the filter on the alerts table and show all alerts

Click Clear Filter at the top right above the table header.

The table displays all alerts, and the filtering row becomes grey in color.

Security Alerts: Using the Alert Player

When you find an alert that requires attention, you can investigate the sequence of events that
contributed to it. Double-click its row in the alert table to open the Alert Player and display the
contributing events for the alert. As illustrated in Figure 2-32, the Alert Player displays a table of
the events above and a graphic diagram of the events below. Use the table and associated
diagrams to determine the following information:

external source hosts or users identified as the attacker in an alert

internal hosts or users identified as the target in an alert

Clear Filter button
78 Reporting Guide

Viewing Security Alerts
historical data about the source and destination hosts and the source and destination users

Figure 2-32: Displaying the Alert Player

Expanding Alert Table Data

Double-click a row in the Security Alert table to launch the Alert Player in a separate window for
the selected alert. Alert Player display is coordinated with row selection in the Security Alerts
widget. In other words, when you select a different row in the Security Alerts widget's table or
press the up or down arrow keys, the Alert Player's diagram changes to display the newly
selected row.

Double-click an alert in the Alert Player's table to display the alert's contributing events in its
diagram panel. Figure 2-33 illustrates an alert raised by the McAfee Alert: Port Scan & DLP
Violation from Same IP rule. This alert has five contributing events, which display in the Alert
Player table in Timestamp order. In the Alert Player, the timestamp represents the time the Parser
received the event.
Reporting Guide 79

Chapter 2: Using Dashboards
You cannot sort the rows in this table. To maintain the consistency of playback over time, events
always appear in the order in which they contributed to the alert.

NOTE: By default, the Alert Player illustrates contributing events. Click the Raw Data tab to
display the actual event data. For more information, see “Viewing the Raw Data”, on page 83.

Figure 2-33: Alert Raised for McAfee Alert: Port Scan & DLP Violation from Same IP

The Alert Player illustrated above displays all recorded contributing events for the selected alert.
As indicated by the highlight in the first table row, the diagram illustrates the first contributing
event.

The First Contributing Event

The diagram displays a playback of the events that led to the alert. The diagram usually includes
two lines for each event: one from source user to destination user, and another from source IP to
destination IP. However, if one source is missing, the other source points to both destinations;
and if one destination is missing, both sources point to the other destination. In other words, as
long as at least one source and one destination are known, at least one line displays.

View Events View Raw Data
80 Reporting Guide

Viewing Security Alerts
Because the source user is unknown for the illustrated McAfee alert, the lines in the example
diagram are from the source IP to destination user and destination IP.

As illustrated in Figure 2-33, the legend in the lower left of the diagram indicates:

The blue arrows illustrate the assets involved in the current (first) contributing event. In the
example, a system identified as 192.168.165.98 has broken into the machine identified as
107.117.155.239 as the Admin Domain X administrator.

This visual information is substantiated by the values in the first and fourth rows of the Events
table that displays at the top of the window. Each of these rows indicate that the system
identified as 192.168.165.98 tried to break into 107.117.155.239 as the Admin Domain X
administrator.

The dashed black arrows illustrate the assets involved in future contributing events, that is, any
of the contributing events below the first one in the table. In the example, a future attack
originates when a system identified as 107.117.155.239 has broken into two machines
identified as 99.247.173.41 and 223.198.237.88.

Because Figure 2-33 illustrates the first contributing event, the diagram does not illustrate use of
solid black arrows. Such arrows represent assets involved in an event that precedes the currently
displayed one. For an illustration of a solid black line, see “The Second and Subsequent
Contributing Events”, next.

The Second and Subsequent Contributing Events

To view the second event that contributed to the current alert, select the next row in the Alert
Player table. There are several ways to move through the table:

In Events mode table (Events tab selected), click the desired target row.

In Raw Data mode (Raw Data tab selected), click the desired target row.

Click the appropriate VCR button:

Move the slider.

Click an arrow in the diagram.

Use the arrow keys (Up arrow stops moving when you reach the top of the table; Down arrow
stops at the bottom).

Use the Enter key (moves only down through the table but wraps to the first row when it
reaches the bottom).

Use Shift-Enter (moves only up through the table but wraps to the last row when it reaches the
top).

As you move through events in the table, the corresponding event playback displays.
Reporting Guide 81

Chapter 2: Using Dashboards
Figure 2-34 illustrates the last contributing event, which represents the destination IP from the first
contributing event as the source IP for the last contributing event.

Figure 2-34: Viewing the Last Contributing Event

Figure 2-34 illustrates:

The last contributing event represents a system identified as 107.117.155.239 breaking into the
machine identified as 99.247.173.41

One of the dashed black arrows shown in the first event's diagram has become solid blue in the
last event’s diagram. Also, the lines that were solid blue for the first event have become solid
black, which indicates the connected assets were involved in an earlier contributing event.
82 Reporting Guide

Viewing Security Alerts
Viewing the Raw Data

To view the raw event data for each of the contributing events, click the Raw Data tab at the top of
the Alert Player. Figure 2-35 illustrates display of raw data.

Figure 2-35: Viewing Raw Data

Security Alerts: Understanding the Alerting Rule that Raised the Alert

To better understand the conditions that caused the McAfee Alert: Port Scan & DLP Violation
from Same IP alert, you can read a description of the triggering rule in the Rules section of
Administration mode. To view the description, click Rules in Administration mode; then select the
Reporting Guide 83

Chapter 2: Using Dashboards
mcAfeeDLPCritical.alert rule from the list of Alerting Rules. The Description panel describes
the events required to raise the alert, as illustrated in Figure 2-36.

Figure 2-36: Viewing Information about the Rule that Raises an Alert

Viewing Exception Alerts

The Exception Alerts widget displays a row every time the cache entry of a scheduled report
contains at least one row, which represents an exception. For example, a report that lists after-
hours logins might be scheduled to trigger an alert when a user logs into your system over the
weekend or after close of business. The alert displays in the Exception Alerts widget.

The alert row in the widget displays the following information about the report that triggered the
alert:

Date and Time—time the report ran

Report Name—name of the report

Rows—number of rows returned by the report

Namespace—namespace against which the report ran
84 Reporting Guide

Refreshing Dashboards and Running Items
You can open the report to view the results by right-clicking the alert row in the widget, as shown
in Figure 2-37.

Figure 2-37: Viewing the Report From the Exception Alerts Widget

Viewing the Report that Raised the Exception

To view the report that triggered an exception alert

1 In the Exception Alerts widget, right click on a row and select View Report from the popup.

The report displays in a new page in the dashboard.

2 If desired, right click and select Copy Data to Clipboard.

HawkEye AP Console copies the data in the alert row to the clipboard as plain text. You can
paste it into any file that accepts text.

Using the Exception Alert Widget

Like the Security Alerts widget, you can change the appearance of the Exception Alerts widget by
changing column widths, sorting rows, and filtering rows. For more information, see:

• “Widening Column Display in an Alert Widget”, on page 77

• “Sorting Alert Data”, on page 76

• “Filtering Alert Data”, on page 77.

REFRESHING DASHBOARDS AND RUNNING ITEMS

The Refresh option enables you to refresh the cache entry of every report widget on a
dashboard. When you refresh a dashboard, the system checks whether it contains any report
widgets for which a more recent cache entry exists. If it finds a newer cache entry for any report
widgets, it refreshes those widgets to display the most recent one. Figure 2-38 illustrates the three
different menus that provide the Refresh option. You can also click the Refresh icon from the tool
bar.

If you leave your dashboard open for a couple of days and the dashboard is scheduled to run
daily, use Refresh to manually update all cache entries in the dashboard. Alternately, you can
close and reopen the dashboard to refresh its cache.
Reporting Guide 85

Chapter 2: Using Dashboards
The Run option differs depending on the menu from which you access it:

Workspace Action Menu—The Run option provides a submenu to set the scope of the
operation: the entire dashboard, the current page, or the selected report widget.

Right-Click Popup Menu from Report Widget Header—You can run all widgets on the
current page.

Right-Click Popup Menu from Report Widget Body—You can run the current widget.

Figure 2-38 illustrates the three different menus that provide the Run option.

NOTE: Because alert widgets are dynamically updated, there is no need to refresh them.

Figure 2-38 illustrates both the Workspace Action Menu and two popup menus.

Figure 2-38: Running Items

When you run a specific report, the dialog displays the parameters set for the report. You can
modify these parameters when you run the report, but your changes are reflected only in the
current run. The report definition settings do not change.

EXPORTING DASHBOARDS AND REPORTS

HawkEye AP Console provides several options for exporting dashboards and reports:

“Exporting a Dashboard or Report to PDF”, next

“Exporting a Report to a CSV File”, on page 90

“Exporting a Report to an HTML File”, on page 91

Workspace Action Menu:
Run selected report widget

Right-Click Popup Menu from Report widget header:
Run all widgets on current page

Right-Click Popup Menu from Report widget body:
Run current widget
86 Reporting Guide

Exporting Dashboards and Reports
“Exporting a Report to an XML File”, on page 92

NOTE: Available formats differ depending on whether you are exporting a dashboard, a report
widget from a dashboard, or a report from Reports mode:

You export a dashboard to PDF format.

When you export a report widget from a dashboard, you have a choice of HTML, XML, or CSV formats.

When you export a report from Reports mode, you have a choice of PDF, HTML, XML, or CSV formats.

IMPORTANT:

By default, each tabular report exports no more than 10,000 rows. This limit is useful when you
export a report with wide rows. If you want to export more rows, you can increase the maximum
number on a report-by-report basis. The maximum number of rows depends on the size of
each row in a given report, your system resources, and your export format.

If you want to export a report to PDF, Sensage strongly recommends that you set the maximum
to no more than 10,000 rows. However, if you want to export the output to CSV, HTML, or XML,
you can increase the maximum rows returned.

To change the default, maximum, open the report for editing and select the Properties tab.
Enter the desired value in the “Export Limit” “Maximum rows per document" field. You must
make this change separately for each report. For more information, see “Specifying Print
Options and Maximum Rows”, on page 166.

The maximum-rows setting applies regardless of whether the report is exported manually from
a dashboard or by a schedule.

Exporting a Dashboard or Report to PDF

You can export an entire dashboard or report to a PDF file. This section covers the following
topics:

• “Exporting a Dashboard”, next

• “Exporting from Reports Mode”, on page 88

• “PDF Cover Sheet”, on page 88

• “Instructions for Exporting to PDF”, on page 88

Exporting a Dashboard

When you export a dashboard, the PDF file contains all reports in the dashboard as well as all
images and text widgets.

Report display in the PDF file depends on its display in the dashboard:

If a report is displayed in table format, the PDF contains every row in the table.

If a report is displayed in chart format, the PDF displays a snapshot of the report as a chart.

You cannot export alerts from Dashboards in PDF format. You may create a custom report based
on system tables for Security Alerts (not Exception Alerts) that results in the same data set and
you can export that report in PDF format.
Reporting Guide 87

Chapter 2: Using Dashboards
You cannot export a single report widget to PDF. To save a single report to PDF, use Reports
mode.

IMPORTANT: Do not export dashboards containing more than 200,000 rows of data.

Exporting from Reports Mode

When you export a report from Reports mode, its PDF display depends on whether a chart has
been defined for the report:

If a chart has been defined, the PDF contains every row in the table as well as a snapshot of the
report as a chart.

If a chart has not been defined, the PDF contains every row in the table.

PDF Cover Sheet

The PDF file for a dashboard and report contains a cover sheet that includes the name of the
dashboard or report, and the name of the users that created and last modified the dashboard or
report. For a report, the cover sheet also displays the report start date and end date and the
namespace in which the report ran.

Every page in the PDF file, including the cover sheet, contains a footer that displays the date and
time of file creation and the page number.

The name of the PDF file automatically includes the name of the dashboard or report and the date
of creation. On a Windows system, HawkEye AP defaults to saving the file in the My Documents
folder; however, you can browse to another folder.

Except for the file extension, the naming convention for the CSV file is the same as for the PDF.
However, when you save a report as CSV, the system displays the Export to CSV dialog. This
dialog provides a dropdown of available encoding formats, from which you select the desired
one.

Instructions for Exporting to PDF

This topic describes how to export a dashboard and a report from Reports mode to PDF format.

EXPORTING A DASHBOARD

To export a dashboard to a PDF file

1 Either select Export Dashboard to PDF... from the Workspace Action Menu or right click
anywhere in the dashboard to display the popup menu and select Export > Dashboard to
PDF....

A dialog displays that allows you to browse a location and specify a name for the file.

2 Browse to the desired destination folder and either specify the file name or keep the default
name.

3 Save the file.
88 Reporting Guide

Exporting Dashboards and Reports
Figure 2-39 illustrates the right-click menu from Dashboards mode.

Figure 2-39: Exporting from a Dashboard

EXPORTING A REPORT FROM REPORTS MODE

To export a report to a PDF file

1 Select the report from the list of All Report Definitions and open the report cache for viewing.

2 Either right click to display the popup menu or use the Action Menu to select Export > PDF...,
as illustrated in Figure 2-40.

A dialog displays that allows you to browse a location and specify a name for the file.

3 Browse to the desired destination folder and either specify the file name or keep the default
name.
Reporting Guide 89

Chapter 2: Using Dashboards
4 Save the file.

Figure 2-40: Exporting a Single Report from Reports Mode

Exporting a Report to a CSV File

This topic describes how to export a report widget from a dashboard and a report from Reports
mode to CSV format.

NOTE: When exporting reports in CSV format to Microsoft Excel on a Japanese Windows
installation, the JIS and SJIS CSV export encodings work correctly. However, the EUC-JP, UTF-8,
and UTF-16 CSV export encodings do not work correctly. This problem appears to be an issue
with Microsoft Excel because characters encoded with UTF-8 display correctly when exported to
the Notepad application.

To export a report widget to a CSV file from a dashboard

1 In Dashboards mode, right click the report widget to display the popup menu.

2 Select Export > Report to CSV... .

Figure 2-39 illustrates the popup menu.

The Export to CSV dialog displays.

3 From the Export to CSV dialog, select the desired encoding.

A dialog displays that allows you to browse a location and specify a name for the file.

4 Browse to the desired destination folder and either specify the file name or keep the default
name.

5 Save the file.
90 Reporting Guide

Exporting Dashboards and Reports
To export a report to a CSV file from Reports mode

1 From Reports mode, select the report from the list of All Report Definitions, open the report
cache for viewing, and either click the Action Menu or right click the report widget to display the
popup menu.

2 Select Export > Report to CSV... .

Figure 2-40 illustrates the popup menu.

The Export to CSV dialog displays.

3 From the Export to CSV dialog, select the desired encoding.

A dialog displays that allows you to browse a location and specify a name for the file.

4 Browse to the desired destination folder and either specify the file name or keep the default
name.

5 Save the file.

Exporting a Report to an HTML File

This topic describes how to export a report widget from a dashboard and a report from Reports
mode to HTML format.

To export a report widget to an HTML file from a dashboard

1 In Dashboards mode, right click the report widget to display the popup menu.

2 Select Export > Report to HTML... from the submenu, as illustrated in Figure 2-39.

The Export HTML dialog displays.

3 From the Export HTML dialog, select the desired encoding.

A dialog displays that allows you to browse a location and specify a name for the file.

4 Browse to the desired destination folder and either specify the file name or keep the default
name.

5 Save the file.

6 Double click the HTML file to display the report in a browser.

To export a report to an HTML file from Reports mode

1 From Reports mode, select the report from the list of All Report Definitions, open the report
cache for viewing, and either click the Action Menu or right click the report widget to display the
popup menu.

2 Select Export > HTML....

Figure 2-40 illustrates the popup menu.

The Export HTML dialog displays.
Reporting Guide 91

Chapter 2: Using Dashboards
3 From the Export HTML dialog, select the desired encoding.

A dialog displays that allows you to browse a location and specify a name for the file.

4 Browse to the desired destination folder and either specify the file name or keep the default
name.

5 Save the file.

6 Double click the HTML file to display the report in a browser.

NOTE: The export process saves the report in a zip file that contains:

the tabular report in HTML format

its css style sheet

if the report includes a chart, a png image file that illustrates a snapshot of the chart

Exporting a Report to an XML File

This topic describes how to export a report widget from a dashboard and a report from Reports
mode to XML format.

To export a report to an XML file from a dashboard

1 In Dashboards mode, right click the report widget to display the popup menu.

2 Select Export > Report to XML... from the submenu, as illustrated in Figure 2-39.

A dialog displays that allows you to browse a location and specify a name for the file.

3 Browse to the desired destination folder and either specify the file name or keep the default
name.

4 Save the file.

To export a report to an XML file from Reports mode

1 From Reports mode, select the report from the list of All Report Definitions, open the report
cache for viewing, and either click the Action Menu or right click the report widget to display the
popup menu.

2 Select Export > XML....

Figure 2-40 illustrates the popup menu.

A dialog displays that allows you to browse a location and specify a name for the file.

3 Browse to the desired destination folder and either specify the file name or keep the default
name.

4 Save the file.

NOTE:

The export process saves the report in a zip file that contains:
92 Reporting Guide

Exporting Dashboards and Reports
the report in XML format

an xsd file (its schema)

if the report has been saved as a chart, a png image file that illustrates a snapshot of the report as a
chart

If the report contains many rows, the XML file will contain all lines and might take a long time to
process. Because the data is saved in chunks, processing should not fill memory.
Reporting Guide 93

Chapter 2: Using Dashboards
94 Reporting Guide

CHAPTER 3

Running, Viewing, and Managing Reports

This chapter contains the following sections:

• “Overview of Reports Mode and the All Report Definitions List”, next

• “Finding Specific Reports in the All Report Definitions List”, on page 98

• “Running a Report”, on page 100

• “Managing Report Shortcuts in Folders”, on page 110

• “Modifying Display of a Report”, on page 112

• “Viewing Report Results and Managing Report Cache Entries”, on page 114

• “Viewing the Report Query”, on page 116

• “Viewing Report Statistics”, on page 117

• “Deleting Report Definitions”, on page 118

• “Viewing and Assigning Report Schedules”, on page 120

• “Using Distribution Filters to Limit Viewable Data by Role”, on page 120

• “Viewing and Assigning Report, Dashboard, and Folder Permissions”, on page 122

OVERVIEW OF REPORTS MODE AND THE ALL REPORT DEFINITIONS LIST

This chapter introduces Reports mode and the All Report Definitions list, which displays all
report definitions that you have permission to access. A report definition is a specification that
determines the actual data to display in a report and the way the data is formatted and arranged.
A report definition differs from a report cache entry as a recipe differs from a meal. The definition
provides a set of instructions. The report cache entry provides the formatted data.

After a report definition is created, a user or schedule runs it to return results. The results are
saved in a report cache entry, which is a quickly accessible version of data stored in the EDW for
a specific date period. Typically the report definition has aggregated or otherwise manipulated
the stored data, and the cached data reflects these manipulations. For more information about
the report cache, see “Cached Data: Making Stored Data Quickly Available”, on page 43.

Every run of a report definition creates a new cache entry. Each cache entry represents a single
report run and contains the data set from that run for the specific date range. The associated
caches for a report definition are available from the Options Pane when you view a report widget
in the dashboard or from Reports mode.

Typically, a report displays the most recent cache for the smallest interval. However, you can
select any associated cache or set of caches for display. You can use the Options Pane to
combine multiple contiguous caches into a single result set. For example, assume you run a
report weekly on Sundays. You can combine 4 weekly caches into a single report that represents
an entire month. For more information, see “Viewing and Changing the Time Range and
Namespace”, on page 51.

Schedules usually determine when a report definition runs, but users with appropriate
permissions can also run them manually. In addition to being associated to report caches, a
report definition is also associated with all schedules and permissions assigned to it.

The columns in the All Report Definitions window list each report definition’s type (Wizard or
SQL), name, description, date last run, number of reports for viewing (saved caches), disk usage,
Reporting Guide 95

Chapter 3: Running, Viewing, and Managing Reports
creator and creation date, and the last user to modify the report. The list also displays the Actions
column, which provides the three icons that enable you to edit, view, and run the report.

This chapter describes how to use Reports mode and the All Report Definitions list to perform
the following tasks:

View all reports in your system that you have permission to access, and view information about
those reports

Create folders to organize report shortcuts by audience, usage, or other need

View report results

View report cache entries and the amount of disk space each consumes

Run reports manually

Delete report definitions

View and assign permissions to each report

Delete unwanted caches

Figure 3-1 illustrates the All Report Definitions pane in the Reports workspace. This pane
displays a list of all reports in the system that you have permission to access.

Figure 3-1: Reports Mode Example

Report opened for Edit

User-defined
folders enable
groups of related
report shortcuts

Report not yet run

Status Bar

Basic actions for each report
Indicates the All Report Definitions pane displays

Search tool

Report opened for Viewing

Full set of available actions

Run Report Status Button
96 Reporting Guide

Overview of Reports Mode and the All Report Definitions List
As illustrated in Figure 3-1, you can group reports in your own folders. The All Report Definitions
window displays all the reports that you have permission to access. You create a folder to display
only a subset of report definitions, which are actually shortcuts to the master definition. When you
select a folder, the workspace displays only the report shortcuts in that folder. For more
information, see “Managing Report Shortcuts in Folders”, on page 110.

The icons in the Actions column in Figure 3-1 provide quick access to the most common
operations that you can perform on a report definition:

Edit —Open for editing an existing report definition

For more information, see Chapter 4: Creating and Editing Wizard Reports and Chapter 5:
Creating and Editing SQL Reports.

View —Open for viewing a report that has already run

NOTE: A report must be run before you can view its results. The results are saved in a report
cache, which you open for viewing. If the report has never been run, the view icon displays as
disabled, as illustrated in Figure 3-1.

For more information, see “Viewing Report Results and Managing Report Cache Entries”, on
page 114.

Run —Run a report definition; you can use the Run dialog to change the date period and
may have the opportunity to affect the output in other ways, such as specifying values for
column criteria.

For more information, see “Running a Report”, on page 100.

The icons to the left of the All Report Definitions list differentiate between the two types of report
definitions:

Wizard Reports —Creating and editing a wizard report requires knowledge of your data and
a clear understanding of the report’s purpose but no understanding of SQL (Structured Query
Language). For more information, see Chapter 4: Creating and Editing Wizard Reports.

SQL Reports .—Creating and editing a SQL report requires knowledge of SQL and HawkEye
AP extensions to SQL and allows for more advanced queries than those enabled by the wizard.
For more information, see Chapter 5: Creating and Editing SQL Reports.

What Does a Report Definition Specify?

A report definition identifies the report data source, the columns that display, and the date range
of the data to include in the report. It may also define column-criteria rows that allow a run-time
user to set value(s) for specific column(s).

Each definition also identifies the process used to create it—a definition is created either as a
Wizard report or a SQL report and can be edited only in the style by which it was created. You
can, however, copy the SQL generated for a Wizard report and use it as the basis for a SQL
report. For information on viewing and copying the generated SQL, see “Viewing the Report
Query”, on page 116.

The definition also includes the following manipulations that can be specified on the report data:
Reporting Guide 97

Chapter 3: Running, Viewing, and Managing Reports
criteria that limits the returned data by time range and column values

maximum number of rows to display

associated reports

column display

chart display

Additionally, a Wizard report contains:

aggregation that summarizes and groups the data by column values

threshold that eliminates aggregated groups of data

sort order

NOTE: A SQL report definition also enables aggregation, thresholds, and sorting, but these are
part of the SQL query. A Wizard report defines these separately in the user interface. A SQL report
definition also allows for additional manipulations. For more information, see “Overview of SQL
Reports”, on page 177.

The following sections describe how to run, view, and manage Wizard and SQL reports.

FINDING SPECIFIC REPORTS IN THE ALL REPORT DEFINITIONS LIST

The workspace for the All Report Definitions window contains a powerful Search field. This field
accepts text from any of the columns as criteria to limit display of the report-definition rows. For
example, you can enter text that limits the rows by report name. You can enter more text that
limits the rows further by metadata text. The next few graphics illustrate how you can limit display
from 24 rows to a single row.
98 Reporting Guide

Finding Specific Reports in the All Report Definitions List
Figure 3-2 illustrates an All Report Definitions list that contains 24 report definitions.

Figure 3-2: Displaying All Rows in the All Report Definitions List

Figure 3-3 illustrates search text ("log") that limits rows to only four reports, each of whose name
includes "Login".

Figure 3-3: Entering Text That Limits Rows by Report Definition Name

Figure 3-4 illustrates an expansion of the search to include two additional letters ("an"). These
letters do not appear in the report names. Instead they appear in two of the metadata columns:
Reporting Guide 99

Chapter 3: Running, Viewing, and Managing Reports
Created By and Description. Note that the search is case insensitive: the value in one column
contains an uppercase "A".

Figure 3-4: Entering Text That Limits Rows by Metadata

Figure 3-5 illustrates an expansion of the search to include four additional letters ("alys") that
appear only in the Created By column.The search has now limited report definition display to a
single row.

Figure 3-5: Limiting Rows to a Single Row

The three graphics above illustrate how you can limit the displayed rows by searching for values
in both the report name column and metadata columns.

When you are done searching, click the Clear-Search button () to re-display all report definition
rows.

RUNNING A REPORT

• “Background”, next

• “Run Dialog for a Wizard Report”, on page 102

• “Run Dialog for a SQL Report”, on page 105

• “Run Report Status Dialog”, on page 106

• “Running Multiple Reports Simultaneously”, on page 109

Background

Running a report is simple, and there are several steps:

1 Find the report definition in the All Report Definitions list.

2 Click the Run () icon.

Clear-search button
100 Reporting Guide

Running a Report
3 In the Run dialog:

Enter date criteria.

Enter or change column criteria, if available and desired.

Change the namespace, if desired.

4 Click Run.

5 When the Run Report Status dialog indicates that the run has completed, click the View ()
icon to view the report.

NOTE: The default maximum number of rows returned in a report is 100,000. You can reset the
maximum in the controller.prop file. Refer to “Administering HawkEye AP Console and the
Application Manager”, on page 183," in the Administration Guide.

The Run dialog for a Wizard report differs from the one for a SQL report. The next sections
describe these Run dialogs and how to use them.
Reporting Guide 101

Chapter 3: Running, Viewing, and Managing Reports
Run Dialog for a Wizard Report

The Run dialog for a Wizard report offers several options, as illustrated in Figure 3-6 and Figure 3-
7.

Figure 3-6: Run Dialog Options for Wizard Reports

As Figure 3-6 illustrates, the Run dialog enables you to change the date and time range that the
report data represents. You can also select a different time zone from the dropdown. For more
information, see “Modifying the Time Range”, next.

Modifying the Time Range

There are several options for specifying the time range:

is—all events occur between 12:00:00 am and 11:59:59 pm

is between—all events occur between two user-specified dates and times

is yesterday—all events occur yesterday between 12:00:00 am and 11:59:59 pm

is last week—all events occur between Monday through Sunday

NOTE: You can set the week to begin on Sunday by editing your preferences. For more
information, see “Setting Preferences”, on page 35.

Click to delete unwanted
criteria row(s).

Select the desired column value.Optionally select a different
operator from the dropdown.

Change the time period as desired. Change the time zone if desired.

Optionally, select a different namespace.
102 Reporting Guide

Running a Report
is last month—all events occur between the first and last days of the month

is last (custom)

For detailed information about changing the date range, see “Date Criteria: Specifying Time
Range”, on page 134.

Changing the Namespace

Figure 3-6 also illustrates that you can select a different namespace from a dropdown of available
namespaces. For example, if your system stores the hosts table in both the Eastern and
Western namespaces, and a single report definition retrieves host information from either of these
namespaces, you can select the desired namespace at the time you run the report.

Modifying the Operator

The Run dialog for a Wizard report may provide one or more criteria rows. Each criteria row is
specific to a column in the report and is associated with an operator and a value field. Depending
on the type of value field, you can either select from a dropdown of values or enter your own value
for each column.

Each criteria row specifies the relationship of the selected value to the specific column. For
example, the criteria row might specify that the column exactly matches the selected value,
contains the selected value, or does not contain the value. You can change this relationship from
the criteria dropdown. The table below describes each of the operators.

Operator Explanation Example

contains matches values that include the specified
text

Windows would match:
• Windows Retriever Non-DC

• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

• My Windows server

does not contain matches values that do NOT include the
specified text

Non-DC would match:
• Windows Retriever DC

• Windows Snare DC

is exactly matches values that include ONLY
the specified text

Windows Retriever Non-DC would
match:
• Windows Retriever Non-DC

is not matches values that do NOT exactly
match the specified text

Windows Retriever Non-DC would
match:
• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

• Unix

• Linux

• Candy Bars

starts with matches values that begin with the
specified text

Windows would match:
• Windows Retriever Non-DC

• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC
Reporting Guide 103

Chapter 3: Running, Viewing, and Managing Reports
Adding, Deleting, and Modifying Criteria Rows

The Run dialog for a Wizard report also displays the Add Criteria () and the Delete Criteria ()
icons. These icons allow you to add additional criteria row(s) or remove unwanted criteria row(s).
For example, if you do not want to limit the report by Event Source, you could click the Delete
Criteria icon to remove this row from the Run dialog. If you want to limit the report by a third
column’s value, you could click the Add Criteria icon to add another row to the dialog.

Figure 3-7 illustrates additional options that the Run dialog provides for a Wizard report. This
figure shows that you can specify whether each row in the report should represent the specified
value for every column or whether each report row should represent the specified value for only
one of the columns:

If the Match column is set to All Criteria, the example report returns data only when the Event
Description is Successful logon AND the Event Source contains Windows.

If the Match column is set to Any Criteria, the example report returns data when the Event
Description is Successful logon OR the Event Source contains Windows.

Figure 3-7 also illustrates that you can change the column represented by a criteria row without
deleting the row and adding a new row for the desired column. Simply select the desired column

ends with matches values that end with the specified
text

DC would match:
• Windows Retriever Non-DC

• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

Regular
Expression

matches the specified regular expression
NOTE
• A regular expression is written in a formal

language that interprets such text as specific
characters, words, or patterns of characters.

• If the search pattern includes a slash (/)
character, you must precede it with a
backslash (\) character.

• HawkEye AP supports Perl regular
expressions

To locate the following text:
default/:Report

Enter the following text:
default\/:Report

Operator Explanation Example
104 Reporting Guide

Running a Report
from the column dropdown in the existing criteria row and enter an appropriate value for it in the
value field. You may also want to change the operator.

Figure 3-7: Run Dialog: Additional Options

After you set all values and criteria as desired, click Run to generate the report. The Run Report
Status dialog displays, as described in “Run Report Status Dialog”, on page 106.

Run Dialog for a SQL Report

The Run dialog for a SQL report is not as flexible as the one for a Wizard report. As Figure 3-8
illustrates, the Run dialog for a SQL report also enables you to change the time period and time
zone for the report. It also enables you to select a value for column criteria and to change the
namespace.

Click to select a different column. Click to switch to Any Criteria.

Click to add a criteria row.
Reporting Guide 105

Chapter 3: Running, Viewing, and Managing Reports
However, the Run dialog for a SQL report does not provide flexibility in removing or adding a
column-criteria row, or changing the column represented by a a column-criteria row, or changing
the operator that specifies the relationship between the column and the selected column value.

Figure 3-8: Run Dialog Options for SQL Reports

After you set all values and criteria as desired, click Run to generate the report. The Run Report
Status dialog displays, as described next.

Run Report Status Dialog

When you run a Wizard or SQL report, the Run Report Status dialog displays and the Run
Report Status button changes. This button displays in the status bar of Reports and Dashboards

Click to select a column. value

Change the time period as desired. Change the time zone if desired.

Optionally, select a different namespace.
106 Reporting Guide

Running a Report
mode. Figure 3-9 illustrates how the Run Report Status dialog and the status-bar button change
as your run several reports.

Figure 3-9: Run Report Status Dialog and Button: Explained

As the report runs, the Run Report Status dialog displays the Cancel icon, which allows you
to abort processing. While the report is cancelling, the status dialog displays the word
Cancelling. When cancelling is complete, the dialog indicates that the run was cancelled, as
illustrated below in Figure 3-10.

Figure 3-10: Run Report Status Dialog: Cancelling a Run

3

2

1 Status-bar button indicates one
report has run successfully

Run a second report—Run Report Status dialog displays:

... and status-bar button indicates
one report is running.

... and status-bar button indicates 2
reports have run successfully.

Click Clear all Finished and status-bar
button indicates no reports have been run

4

Second report run
completes
successfully...
Reporting Guide 107

Chapter 3: Running, Viewing, and Managing Reports
If the report fails to run, the Run Report Status dialog an <error> link. Click the link for error
information, as illustrated in Figure 3-11.

Figure 3-11: Run Report Status Dialog: Encountering a Run Error

If running your report takes a long time, you can click Minimize or the standard Close icon to
minimize the Run Report Status dialog. Regardless of which way you minimize the window,
processing continues. Even if you close HawkEye AP Console, processing continues. You can
use the status-bar Run Report Status button to determine when processing completes.

As soon as processing completes, the status-bar button increments the number of successfully
run reports. You can reopen the dialog by clicking this button, as illustrated in Figure 3-12.

The status bar shows zero (0) reports run after you click Clear all Finished in the Run Report
Status dialog or close and reopen HawkEye AP Console.

Click to display message dialog
108 Reporting Guide

Running a Report
Figure 3-12 shows the User Login Details on Windows report displayed in Reports mode. The
user selected Unknown User or bad password as the value for the Event Description column.

Figure 3-12: Viewing Your Report in the All Report Definitions List

If you run several different reports at the same time, you can minimize the Run Report Status
dialog while they run. The status bar automatically increments the number of reports run as each
report completes processing.

Running Multiple Reports Simultaneously

Reports mode makes it easy to run several reports simultaneously, provided you do not want to
change any default values. In other words, if you select and run multiple reports from the All
Reports Definitions list, all selected reports display in the Run Report Status dialog and begin
running immediately.

To select multiple definitions, use the standard interface keys:

Contiguous definitions—select the first definition; SHIFT-CLICK as you select the last definition.

Non-contiguous definitions—select the first definition; CTRL-CLICK as you select each
additional definition.

Figure 3-13 illustrates selection of three reports in the All Reports Definitions list. The user has
right-clicked to open the popup menu and has selected the Run... menu option. HawkEye AP

Click to open or close the Run Report Status dialog
Reporting Guide 109

Chapter 3: Running, Viewing, and Managing Reports
Console responds by displaying the Multiple Reports dialog, which prompts whether you really
want to run multiple reports.

Figure 3-13: Running Multiple Reports Simultaneously

To run the three reports illustrated above, the user would click Continue in the Multiple Reports
dialog. All three reports run with their default settings, including the default time period.

MANAGING REPORT SHORTCUTS IN FOLDERS

Reports mode provides folders, which enable you to group report shortcuts by usage,
department, accessibility, or any other need. Grouping report definitions in folders allows you or
an administrator to apply schedules and permissions to the definitions as a group, and to send a
set of report cache entries to a department.

NOTE: Setting permissions on a folder does not effect the permission of the existing shortcuts in
the folder nor the permissions of the report definitions that the shortcuts reference. The
permissions set on a folder are copied to any new shortcuts or folders that you create in the
folder. When you move a shortcut to another folder, permissions defined by the source folder are
removed from the shortcut and permissions defined in the destination folder are copied to the
shortcut. For more information, see:

“Viewing and Assigning Report, Dashboard, and Folder Permissions”, on page 122

Managing Access to HawkEye AP Console Reports, Dashboards, and Folders in Chapter 8,
“Administering Users and Authentication” of the Administration Guide.

Dragging a report definition into a folder from the All Report Definitions list creates a shortcut to
the definition. In other words, the report definitions that display in your folders do not exist
110 Reporting Guide

Managing Report Shortcuts in Folders
separately from their master report definitions. They only point to the actual definitions that
display in the All Report Definitions list.

NOTE: If you delete a report definition from a folder, you delete only the shortcut. The master
definition remains unchanged. If you modify a report definition from a folder, you modify all
instances of the definition in every folder as well as the master definition.

As illustrated in Figure 3-14, you can create a hierarchy of folders by creating one folder below
another. In the graphic below, the user has right-clicked on the Foundation folder to display the
New Folder menu. Alternately, you can create folders at the same level and drag one folder
below the other.

Figure 3-14: Creating a Folder

After you create a folder, you populate it by dragging desired report definition(s) into it. Figure 3-
14 illustrates the process of dragging three report definitions simultaneously to the Microsoft
Windows folder. Before selecting the definitions to move, the user limited the number of
displayed reports by entering criteria in the Search field.

Figure 3-15: Populating a Folder

The operation illustrated above drags three report definitions simultaneously to the Microsoft
Windows folder.

NOTE:

You can drag the same report definition to multiple folders.

There is an alternate way to create and populate a folder.

Limit displayed reports by
specifying search criteria

Move report(s) to a folder by

Click to clear search
Reporting Guide 111

Chapter 3: Running, Viewing, and Managing Reports
Without first creating a folder, select the report definition(s) in the All Report Definitions list
and drag them to the Navigator. HawkEye AP Console automatically creates a folder named
"user_name.number", where user_name is the name of the user logged into HawkEye AP
Console and the number is long enough to make the name unique. This folder contains
shortcuts to all definitions you dragged to it. Rename the folder by right-clicking and selecting
Rename Folder from the popup.

MODIFYING DISPLAY OF A REPORT

If a tabular report displays unnecessary columns and you want to decrease the width of the
report, you can use the Workspace Options Pane to hide specific columns. To open this pane,

either click the Options Pane icon above the workspace or select Show Options from
the Workspace Action Menu.

The Options Pane provides the Show tab, which enables you to show and hide specific columns
in a report and to show and hide its metadata, which provides information about the report. The
metadata includes the report name, description, and the date criteria that determines its time
period. From this tab, you can also select the Row Number option, which inserts a column of row
numbers to the far left of the report.

The Show tab also enables you to change report display between table, chart, and table and
chart for a report that has been configured as a chart. When you select Table and Chart, the
report displays in both formats in the same window. Figure 3-16 illustrates how you can use this
tab to change table and chart display.

Figure 3-16: Show/Hide Report Metadata and Data for Table Display

As illustrated above, the fields above the horizontal line enable you to show or hide metadata
information. Currently the only metadata value selected is the report name. The fields below the

Click to display
chart format.
112 Reporting Guide

Modifying Display of a Report
horizontal line enable you to show or hide data columns. Currently all data columns have been
selected for display.

When you display the report in both chart and table format, the set of options expands
considerably. As illustrated in Figure 3-17, the set of fields expands to include metadata and chart
values for chart display at the top. Below these are the fields for table metadata and columns.

Figure 3-17: Show/Hide Report Metadata and Data for Table and Chart Display

NOTE: Although you can display both chart and tabular formats simultaneously when you view
the report in Reports mode, Dashboards mode displays only one format style at a time. For more
information, see “Defining Charts”, on page 171.
Reporting Guide 113

Chapter 3: Running, Viewing, and Managing Reports
VIEWING REPORT RESULTS AND MANAGING REPORT CACHE ENTRIES

To view a report that has already run, click the View icon to the left of its name or select the
report in the All Report Definitions list or folder list and then select View from the Workspace
Action Menu. The report displays in a new tab. If it has been run multiple times over different time
periods or intervals, the results of each run have been saved in a report cache entry.

As described in “Cached Data: Making Stored Data Quickly Available”, on page 43, each report
cache contains data for specific date criteria, column criteria, and namespace. The saved data,
which precludes the need to query the EDW repeatedly for the same result set, improves access
time.

Viewing and Changing Cache Entries

To display all cache entries associated with a report, use the Browse Cache Date tab of the
Options Pane. Figure 3-18 illustrates this tab, which displays three sets of cache entries available
to the Privileged Command Summary report:

Daily—The report has daily runs; the Date Criteria field is set to is yesterday.

Weekly—The report has weekly runs; the Date Criteria field is set to is last week.

Absolute Date range—The report has been run manually multiple times.

If a report has multiple saved cache entries, you can access them all and choose the one(s) to
display; select the desired period from the Date Period dropdown. If a report has run in more
than one namespace, you can display cache(s) for another namespace; select the desired
namespace from the Namespace dropdown.
114 Reporting Guide

Viewing Report Results and Managing Report Cache Entries
Figure 3-18 illustrates how to change the displayed cache in the current namespace.

Figure 3-18: Selecting a Cache

Select one or more contiguous caches and click Apply to display the selected cache(s) in the
workspace. For information on displaying multiple cache entries, see “Viewing and Changing the
Time Range and Namespace”, on page 51.

Select the date
period from the
dropdown.

Select the
desired
cache from

Click Apply.3

2

1

Optionally, select
a different
namespace from
Reporting Guide 115

Chapter 3: Running, Viewing, and Managing Reports
Deleting Cache Entries

Over time, the Options Pane will display old cache entries that no longer interest you. To delete
them, select contiguous one(s) you no longer want, right-click, and select Delete Caches. You
will be prompted to confirm or cancel the deletion. Figure 3-19 illustrates this process.

Figure 3-19: Deleting Cache Entries

VIEWING THE REPORT QUERY

The Options Pane also enables you to view and copy the query that retrieves and manipulates the
report data.

If the report is a Wizard report, the SQL tab displays a generated query.

A user defines the report graphically. The SQL query is generated from the user’s definition.

If the report definition provides criteria that enable the run-time user to specify value(s), the
query displayed in the SQL tab shows the user-specified value for each criterion. Locating the
specified value does not require reading the SQL query, however. To display a disabled
version of the actual Run dialog that displays the user-specified criteria values, click View
Search Criteria.

If the report is a SQL report, the SQL tab displays the SQL statement that a user entered to
create the definition.

If the report definition provides criteria that enable the run-time user to specify value(s), the top
of the query displayed in the SQL tab shows the user-specified value for each criterion. The
116 Reporting Guide

Viewing Report Statistics
value displays as an OVERRIDE because the user has overridden the default value for the
criterion. For more information, see “Viewing and Manipulating the SQL Query”, on page 200.

Figure 3-20 illustrates a SQL report that does not provide criteria.

Figure 3-20: Viewing the SQL Query and Report Properties

NOTE:

You do not need to know any SQL to create a Wizard report. As you create and edit a Wizard
report visually in the interface, HawkEye AP translates all your selected options into a HawkEye
AP SQL query. When you run the saved Wizard report, HawkEye AP uses the underlying query
to retrieve and manipulate the data according to your visual specifications.

You can copy the query and paste it into any application that accepts text.

VIEWING REPORT STATISTICS

The Options Pane enables you to calculate statistics on the report data. For each numeric
column, you can total the values, calculate their average, and determine the minimum and
maximum value. You can specify all of these calculations or only a subset.
Reporting Guide 117

Chapter 3: Running, Viewing, and Managing Reports
Figure 3-21 illustrates the results when all four calculations have been selected.

Figure 3-21: Viewing Report Statistics

DELETING REPORT DEFINITIONS

You delete report definitions from the All Report Definitions list. Deleting a report definition also
deletes all shortcuts to it. However, deleting a report shortcut does not affect its associated report
definition.
118 Reporting Guide

Deleting Report Definitions
When you delete a report or reports, a dialog displays that prompts you to verify the deletion by
typing “confirm” in an entry field and clicking Continue. Figure 3-22 illustrates this process.

Figure 3-22: Deleting Reports

If you delete a report from the All Report Definitions list, you permanently delete the report from
the system. However, if you delete a report from a folder, you simply remove the shortcut to the
report. Figure 3-23 illustrates the dialog that displays when you delete a report shortcut.

Figure 3-23: Deleting a Shortcut

NOTE: If you mistakenly delete the master report definition, you must recreate it in the same way
that is was first created.

Case insensitive
Reporting Guide 119

Chapter 3: Running, Viewing, and Managing Reports
VIEWING AND ASSIGNING REPORT SCHEDULES

A report can be associated to multiple schedules, such as daily, weekly, or monthly. Moreover,
one schedule can contain multiple reports and dashboards. After you create a report or a folder of
reports, a user assigned to the administrator role can schedule them. The scheduler is one of the
options available from Administration mode. For more information, see Chapter 7: Creating and
Editing Schedules.

USING DISTRIBUTION FILTERS TO LIMIT VIEWABLE DATA BY ROLE

Distribution Filters allow a report creator to limit the rows a user can view in a report depending on
the roles assigned to the person viewing the report. For example, you could create a distribution
filter that enables a user who is a associated with an Accounting role to view data only from
Accounting Department servers while a user who is associated with an IT role could view all of the
data.

A Distribution Filter contains a filter expression that limits the report’s output to rows that match
the filter expression. The filter also associates one or more roles with the filter. Users who belong
to these roles will only be able to view rows that match the filter expression.

An user must be associated with the administrator or analyzer.admin role to create
Distribution filters using the Administration Mode of HawkEye AP Console. For more information,
see Command Line: Creating and Managing Users, Roles, and Permissions in Chapter 8,
“Administering Users and Authentication” in the Administration Guide.

A user who creates a report can then apply the filter to their report. Users who view the report
must belong to a role associated with the filter to see rows that match the filter expression. Other
users will not be able to view rows in the report that match the filter.

Applying a Distribution Filter to a Report

After a Distribution Filter is created, you can associate them to reports in Reports mode. You can
choose from a list of existing reports, or you can associate a Distribution Filter to a new report you
create in HawkEye AP Console.

To associate a Distribution Filter with an existing report

1 Open HawkEye AP Console and navigate to Reports mode.

2 In the Navigator tree, select the Reports folder that contains the report you want to associate
with a Distribution Filter.

3 Select one or more reports from the Reports Definition list that you want to associate with a
Distribution Filter.

4 Click the Options Pane button in the Toolbar.

The Options Pane opens to the right.

5 Select the Distribution Filters Tab
120 Reporting Guide

Using Distribution Filters to Limit Viewable Data by Role
A list of defined Distribution Filters displays in the Options Pane, as shown in Figure 3-24.

Figure 3-24: Distribution Filters Tab in the Options Pane

6 Select the Distribution Filter(s) you want to associate with this report.

7 Click the Save Changes button at the bottom of the Options Pane.

To associate a Distribution Filter with a new report

1 Begin creating a new SQL or Wizard report (see “Creating and Editing SQL Reports”, on page
177 or “Creating and Editing Wizard Reports”, on page 129).

2 Click the Options Pane button in the Toolbar.

The Options Pane opens to the right.

3 Select the Distribution Filters Tab

A list of defined Distribution Filters displays in the Options Pane, as shown in Figure 3-24.

4 Select the Distribution Filter(s) you want to associate with this report.

5 Click the Save Changes button at the bottom of the Options Pane.

6 Continue creating your report.
Reporting Guide 121

Chapter 3: Running, Viewing, and Managing Reports
VIEWING AND ASSIGNING REPORT, DASHBOARD, AND FOLDER PERMISSIONS

This section describes how to use roles and permissions to control access to reports,
dashboards, and folders in HawkEye AP Console and contains the following sections:

• “Overview of Roles and Permissions”, next

• “Default Roles and Permissions”, on page 123

• “Setting Roles and Permissions in HawkEye AP Console”, on page 125

Overview of Roles and Permissions

Users are associated with roles. Their membership in roles determines the types of action they
can perform on specific items, such as whether they can view a dashboard or modify a report or
open a folder. Administrators give users access to reports, dashboards, and folders by giving
specific roles permissions to those items.

Creating New Reports, Shortcuts, Folders or Dashboards

To create a folder, or dashboard, you must belong to a role that has Edit permission on the
folder where the report, dashboard or folder is created. All report shortcuts, dashboards, or
sub-folders subsequently created in a folder will take on the permissions associated with the
folder. If a report shortcut, dashboard, or folder is moved from another folder into the current
folder, the report, dashboard, or folder loses all permissions associated with the source folder,
and takes on all permissions of the destination folder.

To create a report, you must belong to the analyzer.reports.creator role. When you create
a new report, the report is automatically granted "All" permissions for the
analyzer.report.creator role.

If you move a master report definition to a folder to create a shortcut, the shortcut takes on the
permissions of the master report definition.

A report, dashboard, or folder can also have permissions associated only with the report,
dashboard, or folder. If such an object is moved into another folder, these additional
permissions remain with object.

To give a user access to a report, either create a new role or use an existing role, add the user
to the role, select a report, and grant permissions to the role.

The roles to which a user is assigned as well as the permissions granted to the roles determines
whether a user can edit a report or only run and view it or only run it or have no access to it. Users
who have no permission to view a report will not see the report listed in the All Report Definitions
list. They will also not see the report shortcut in a folder, even if they have full permissions on the
folder. A shortcut has its own set of permissions, which are different than permissions associated
with the report. For example, permissions on a shortcut may allow a user to see the report’s listing
in the Report Definitions list, but that same user may not have permission to view the report’s
output.

NOTE: Users gain the cumulative set of permissions from all roles to which they are assigned. In
other words, if you are assigned to the Human Resources role, which has no permission to
access an item, and to the Investigations role, which has permission to run and view a report, you
have permission to run and view the report.
122 Reporting Guide

Viewing and Assigning Report, Dashboard, and Folder Permissions
Special Roles

HawkEye AP provides the following three special roles:

administrator—allows access to all HawkEye AP functionality

analyzer.alerts—allows access to Security, Exception, and System Alerts (users must also
have View permission for the dashboard containing the Security, Exception, or System Alert
Widgets.

analyzer.admin—allows access to HawkEye AP Console Administration mode

analyzer.reports—allows access to Reports mode and grants Read permission to view
folders within the All Reports Definition folder, however, a user having this role can only view
the folders and cannot view the reports or report links.

analyzer.reports.creator—allows the user to create a report. When a user creates a new
report, Write permission is assigned to this role.

For more information, see:

Managing Access to HawkEye AP Console Reports, Dashboards, and Folders in Chapter 8,
“Administering Users and Authentication” in the Administration Guide.

Default Roles and Permissions

You can use folders to establish default permissions for reports, dashboards, and folders. For
each folder you can define the following permissions for each available role:

View—allows the user to view a report or dashboard, or to view a list of items contained in the
folder

Edit—allows the user to modify a report definition, dashboard, or folder

Run—allows the user to run a report or dashboard
Reporting Guide 123

Chapter 3: Running, Viewing, and Managing Reports
The initial permissions for a report, dashboard, or folder are determined by the permissions set on
the folder where the new report, dashboard, or folder is created. In a new installation of HawkEye
AP software, the roles and permissions are defined as shown in Table 3-1.

Table 3-1: Initial roles and permissions

Any new reports, dashboards, or folders you create in the above folders will take on the roles and
permissions indicated in Table 3-1. If you want a different set of initial roles and permissions, a
HawkEye AP administrator can create new folders under these folders that have a different set of
permissions where users can create new reports, dashboards, or folders that have the desired set
of initial permissions.

Figure 3-25 and Figure 3-26 illustrate the Permissions tab for a report: Privileged Command
Summary. This tab, which functions identically for folder permissions, enables you to set report
permissions to specific roles and to view the assigned permissions. A user with administration
permission creates and modifies the permissions in Administration mode.

Folder Role Permission

Dashboard folders
(created at the top level of
the Navigator tree)

administrator View, Edit, Run

analyzer.admin View, Edit, Run

analyzer.dashboards View

Report folders
(created at the top level of
the Navigator tree)

administrator View, Edit, Run

analyzer.admin View, Edit, Run

analyzer.reports.crea
tor

View, Edit, Run

analyzer.reports View

All Report Definitions
folder

administrator View, Edit, Run

analyzer.admin View, Edit, Run

analyzer.reports.crea
tor

View, Edit, Run

analyzer.reports View
124 Reporting Guide

Viewing and Assigning Report, Dashboard, and Folder Permissions
Setting Roles and Permissions in HawkEye AP Console

As illustrated below, you can select all roles and then apply the same permission to all roles.

Figure 3-25: Assigning Permissions to a Report Collectively

Use the Action Menu to select the Mark
as menu and set the same permissions
to all users.

2

1
Use the Action Menu to Select all users.
The highlighted users here indicate that
all users have already been selected.
Reporting Guide 125

Chapter 3: Running, Viewing, and Managing Reports
As illustrated below, you can specify permissions separately for each role from the dropdown
next to each role.

Figure 3-26: Assigning Permissions to Roles for a Report

As illustrated above, you can assign the same permissions to all roles or can assign specific
permissions to specific roles. In both examples above, the user is assigning permissions to a
single report. If you have several reports and you want to assign the same permissions to all
reports, you can do so with a single operation.

Use the dropdown to set
permissions for each role
126 Reporting Guide

Viewing and Assigning Report, Dashboard, and Folder Permissions
To assign permissions to multiple reports simultaneously, select the desired reports and perform
the same operations illustrated above. Figure 3-27 illustrates a user assigning permissions to two
reports at the same time.

Figure 3-27: Assigning Permissions to Multiple Reports

As illustrated above, the two selected reports already have assigned permissions. The presence
of <Mixed> in most of the Permissions rows indicates that each report assigned different
permissions to these roles. Only the permissions assigned to the analyst_mgr role are identical
for the two selected reports.

The user can easily make all settings the same for both reports by clicking in each <Mixed> row
and selecting the desired permission for each role. Alternately, the user can use the Action Menu
to select all roles and assign the same permissions to all roles.

NOTE: The Permissions tab lists all roles defined for your EDW instance, except the
administrator role.
Reporting Guide 127

Chapter 3: Running, Viewing, and Managing Reports
128 Reporting Guide

CHAPTER 4

Creating and Editing Wizard Reports

This chapter contains the following sections:

• “Creating Wizard Reports”, next

• “Running and Viewing the Wizard Report”, on page 149

• “Editing a Wizard Report”, on page 151

CREATING WIZARD REPORTS

The Report Wizard enables you to graphically select desired columns from a desired table or view
and to specify operations on the selected data. You can start this wizard from any Action Menu or
right-click menu in Reports mode.

This section includes the following topics:

• “Step 1: Specifying Where to Get the Data”, next

• “Step 2: Specifying What Data to Return”, on page 133

• “Step 3: Specifying Further Refinements”, on page 146

• “Running and Viewing the Wizard Report”, on page 149

Step 1: Specifying Where to Get the Data

This topic includes the following headings:

• “Specifying Report Name and Data Source”, next

• “Understanding How HawkEye AP Displays Date and Time”, on page 132

• “Selecting, Renaming, and Ordering Columns for Display”, on page 132
Reporting Guide 129

Chapter 4: Creating and Editing Wizard Reports
Specifying Report Name and Data Source

Select New Wizard Report Definition... to display the first step of the Report Wizard. This step
enables you to name and describe the report and to specify the data on which to base the report.
Figure 4-1 illustrates this window as it first displays.

Figure 4-1: Naming and Describing the Report and Specifying the Data

Report Name—Every report must have a unique name, which can be a combination of any
characters except the slash (/).

NOTE: Depending on your permissions, you might not see all reports in the All Report
Definitions list. However, you cannot name a report identically to one that already exists in your
system. The system notifies you if the name you enter is a duplicate.

Description—You can provide a short description for each report. Your description displays in
the All Report Definitions pane and can display when a user views the report. The description
can be helpful to users who have access to many reports.

Data Source—As described in “Namespaces: Using a Single Report or Dashboard to Access
Different Data”, on page 43, HawkEye AP organizes tables and views into namespaces.
Namespaces allow your site to limit access to data by user permissions and to run the same
report against identically named tables that store different data.

If you have access to more than one namespace, the Data Source dropdown prompts you to select a
namespace. After you click the dropdown to select a namespace, all tables and views for which you
have access permission display below the Data Source field.

If you have access to ten or more namespaces, the Select Namespace dialog displays. This dialog
enables you to choose from all available namespaces.

If you have access to only one namespace, its name displays in the Data Source field and all tables
and views for which you have access permission display below it.

Clear Cache Entries on structural changes—When this box is checked, all cache entries for
this report are deleted any time you make changes to this report definition and save those

Enter a meaningful
name for the report.

Describe the purpose of
the report (optional).

Click the dropdown to
display namespaces if more
than one is available.

3

2

1

130 Reporting Guide

Creating Wizard Reports
changes. If you leave this box unchecked and change the report definition, you will not be able
to save those changes until you first delete all cache entries for the report. If you try to save
changes to a report definition that has existing cache entries, you will see a warning message
but there is no way to keep any changes you have made.

It may be useful to check this box when iteratively developing and debugging a report, so that
you do not have to manually delete cache entries after each test run of the report. When the
report is ready for use in a production environment, Sensage recommends that you uncheck
this box so that cache entries are not unexpectedly deleted.

NOTE: Opening the Data-Source dropdown may take a while the first time you open HawkEye
AP Console.

NOTE: Depending on how preferences have been set at your site, only views may display on
your system.

TIP: HawkEye AP Analytics views simplify report creation by presenting data in a more
meaningful and consistent way than tables.

As illustrated in Figure 4-2, after the tables and views display, you can click the namespace field
to sort the data sources. The triangle icon or indicates a ascending or descending sort
order, respectively. The columns for the selected table display in the Available pane.

Figure 4-2: Specifying the Report Data Source

TIP: For Power Users—After you first display all your namespaces and the tables and views they
contain, you will not see changes to these objects until the next time you log into HawkEye AP
Console. In other words, if another user adds or removes namespaces or tables or views, these
changes do not display dynamically during your current session.

Click to sort the
displayed tables &

Current
namespac

Enter text to limit
display by name
Reporting Guide 131

Chapter 4: Creating and Editing Wizard Reports
Understanding How HawkEye AP Displays Date and Time

Every table that HawkEye AP creates and every view that it delivers contains a ts (timestamp)
column. HawkEye AP uses this column to index and manage the data it stores. A record with a ts
column is called an event. The EDW is optimized to handle event data.

The value of the ts column contains accuracy down to the microsecond, and GMT time zone.
Because the ts column contains so much information, it can be a challenge to determine where
the data for one interval ends and the next begins from the raw ts value. It can also change the
way your data displays. For more information, see “Summarizing Data”, on page 154.

NOTE: The EDW stores all ts data in GMT.

To streamline the report creation process, the Report Wizard provides four columns that are
derived from the ts column: Date and Time, Date, Time, and Day of Week. This isolation of day
and time data enables you to create reports that examine time intervals; for example, you can
create a report to identify activity that occurs outside ordinary business hours or to display only
time intervals during a single day. For an example of such a report, see “Column Criteria: Limiting
the Number of Returned Rows”, on page 139.

Figure 4-3 illustrates the granularity of data displayed in the derived date columns as well as in the
ts column.

Figure 4-3: Illustrating Options for Date and Time Column Data

As an example, this chapter documents how to create a Wizard report that identifies potentially
suspect user logins during off-hours activity. To track the off-hours activity, the example report
takes advantage of the Day of Week and Date columns. For more information, see “Column
Criteria: Limiting the Number of Returned Rows”, on page 139.

NOTE: The dates above use GMT as the time zone. You can change the default time zone in your
preference settings. For more information, see “Setting Preferences”, on page 35.

Selecting, Renaming, and Ordering Columns for Display

After you select the desired table or view, your next task is to select the desired columns by
moving them from the Available into the Selected field. To locate specific available columns, you
can either use the scroll bar or enter text in the Search field. For information about entering
search text, see “Limiting Display by Text Search”, on page 33.

Use the arrow buttons to move all columns or selected columns between the Available and
Selected fields. To move multiple columns simultaneously, use the standard interface keys:

Contiguous columns—select the first column; SHIFT-CLICK as you select the last column

Non-contiguous columns—select the first column; CTRL-CLICK as you select each additional
column

To rearrange the order of columns for display, drag and reposition them in the Selected field.
132 Reporting Guide

Creating Wizard Reports
NOTE: You can use this field to change column order only when you first create the report. After
you save and run it, you use a different window to change column order. For more information,
see “Formatting Columns”, on page 167.

To rename columns for display, double click them in the Selected field and enter the desired
name.

NOTE: After you save and run the report, you use a different window to rename columns. For
more information, see “Formatting Columns”, on page 167.

Figure 4-4 illustrates creation of a wizard report based on a view named userLogin.

Figure 4-4: Specifying Columns for Display

Step 2: Specifying What Data to Return

In the first Wizard step, illustrated in Figure 4-4, you selected the report data source and specified
which of its columns to display. Perhaps you also renamed the report columns and changed their

Double click a
column name to
change its report
heading.
Reporting Guide 133

Chapter 4: Creating and Editing Wizard Reports
order. In the second Wizard step, illustrated in Figure 4-5, you have the opportunity to limit the
number of returned rows by setting report criteria.

Figure 4-5: Limiting Results by Specifying Date Criteria

Each row stored in the EDW represents a single incoming event. The EDW stores all events that
enter the system. When you create a report, you limit its results to a desired subset of events. You
can use this step to limit the rows returned from the EDW by specifying:

Date Criteria—a period of time over which to run your query; for example, you can limit data to
a specific week or month or year.

Column Criteria—column value(s); for example, you can limit results to a specific IP address.

Date Criteria: Specifying Time Range

As illustrated in Figure 4-5, there are several options for limiting the time range:

is—all events occur between 12:00:00 am and 11:59:59 pm

is between—all events occur between two user-specified dates and times

is yesterday—all events occur yesterday between 12:00:00 am and 11:59:59 pm

is last week—all events occur between Monday through Sunday

NOTE: You can set the week to begin on Sunday by editing your preferences. For more
information, see “Setting Preferences”, on page 35.

is last month—all events occur between the first and last days of the month

is last (custom)

By default, the criteria window displays the is yesterday keywords because reports commonly
cover the 24-hour period that ended at midnight yesterday in the time zone set in your
preferences. When you specify a relative date period for a report, such as is yesterday or is last

Preview Calendar

Choice of
Time Periods
134 Reporting Guide

Creating Wizard Reports
week, that period is returned every time a schedule runs the report. The value you specify here
sets the default date range for the report. A user who runs the report manually can change the
period, as can the person who schedules the report.

NOTE: If a user in New York has his time zone set to his local time and he sends an is yesterday
report to a user in San Francisco, the San Francisco recipient views events that occurred in New
York at the times the events occurred in New York.

When you choose relative date criteria, the Wizard displays a preview calendar icon, as illustrated
in Figure 4-6.

Optionally, click the icon to validate your selection. Clicking this icon displays a calendar that
illustrates the selected time range. Use this calendar to verify your specified date(s). As illustrated
in Figure 4-6, the preview calendar identifies the current date and highlights the specified date(s).

Figure 4-6: Displaying the Preview Calendar

Figure 4-6 illustrates that the period for last week begins on a Monday. You can set your system
so that each week begins instead on a Sunday. For more information, see “Setting Preferences”,
on page 35.

If you select the is keyword from the Date dropdown, the Wizard provides a single date field that
displays the current date by default. You can directly modify the text in the Date entry field.

Displays the
current date

Highlights the
specified dates

Displays the
current date

Enables you to
change calendar
period
Reporting Guide 135

Chapter 4: Creating and Editing Wizard Reports
Alternately, you can click its dropdown to display the calendar and change the date graphically,
as illustrated in Figure 4-7.

Figure 4-7: Selecting the Date from the Calendar

NOTE: To change the default date from the calendar, you must select a date before you move
focus from the calendar.

TIP: There are other ways to specify the date from the calendar popup:

Click the year to select the year.

Click the left or right arrows in the header to move backward or forward by months.

Click the down arrow to display the calendar.

Click the month
to display a

2

1

3 Select the desired month.
136 Reporting Guide

Creating Wizard Reports
When you select is between from the Date dropdown, the Wizard displays a second date entry
field and each date entry field includes a time field, as illustrated in Figure 4-8. Use the same tools
to modify the values in each of these fields.

Figure 4-8: Specifying a Range of Dates and Times

NOTE: By default, the time range is 00 00 00 AM through 11 59 59 PM, which represents
midnight of the earlier date to midnight of the later date.

To understand the dates and times in the example above, assume the system contains the
following records:

Jan 1, 2008 01:00 AM

Jan 1, 2008 04:00 AM

Jan 1, 2008 03:50 PM

Jan 1, 2008 11:59 PM

Jan 2, 2008 02:00 AM

Jan 2, 2008 05:00 PM

Given the example dates and times, the report returns records for the following dates:

Jan 1, 2008 03:50 PM

Jan 1, 2008 11:59 PM

Jan 2, 2008 02:00 AM
Reporting Guide 137

Chapter 4: Creating and Editing Wizard Reports
When you choose a custom date range, the Wizard displays several new fields, as illustrated in
Figure 4-9.

Figure 4-9: Specifying a Custom Date Range

The custom date-range option provides additional fields that enable you to configure the interval
and an offset for your report. Enter a numeric value in the first field and use the dropdown to
specify the interval (Seconds, Minutes, Hours, Days, Weeks, Months, or Years) that the
number represents.

NOTE: Each interval includes midnight of the first day through midnight of the last day. For
example, the is yesterday selection indicates an interval that begins midnight of the day before
yesterday and ends at midnight yesterday for the specified time zone. The is last month
selection indicates an interval that begins midnight of the first day of the month and ends at
midnight of the last day of the month for the specified time zone. For example, assume that on
April 17 you run a last-month report. The results reflect 12:00:00 am on March 1 through 11:59:59
pm on March 31.

The custom date-range option also provides an offset field that enables you to specify an interval
by which to move the reporting period backward. This feature allows you to run the report at
times that are meaningful to your data collection. For example, assume you want to report on
data gathered over the past 7 days. Assume further that you know that the data for yesterday is
incomplete. A report that includes yesterday’s data would be misleading. You would set the
interval to 7 days and, to cause the report to skip yesterday’s data, set the offset to "1". The offset
shifts the collection backward by one day as desired.

To verify that the time range and offset have been specified correctly, click the icon to display
a preview calendar that illustrates the selected time range.

To display previous months as well as the current month, click the previous icon that displays
above the top calendar.

Enter a number.
138 Reporting Guide

Creating Wizard Reports
Figure 4-10 illustrates a 15-day time range that is offset by 2 days from the current date.

Figure 4-10: Displaying the Preview Calendar for a Custom Time Range

Column Criteria: Limiting the Number of Returned Rows

In addition to limiting returned rows by limiting the time range, you can limit rows by restricting
data values in specific columns. This topic describes how to add individual column criteria and
sets of column criteria to your report.

Offset

Current
date

Highlights
the
specified
dates
Reporting Guide 139

Chapter 4: Creating and Editing Wizard Reports
ADDING CONDITIONS AND SETS OF CONDITIONS

Figure 4-11 illustrates specification of criteria for three columns. Two of the columns are date
columns derived from the stored timestamp. The third column, which is being created in the
illustration, will represent stored event data.

Figure 4-11: Step 1 of Specifying Column Criteria

Figure 4-10 illustrates a single empty row of column criteria. Figure 4-11 illustrates three rows, two
of which have already been configured with the is between operator. These rows represent
derived date values. They have been configured to return data between 6:00 PM and 6:00 AM
from Monday through Friday. If the Match field is set to Any Criteria, the report will return data
if either of these conditions is true. If the Match field is set to All Criteria, the report will return
data only if all conditions in this group are true.

The third row illustrates selection of the Event Source data column. As described next, you can
configure this field to return all values by default but also provide users with a choice of values
from which they can select at runtime or to enter a value at runtime. These options enable users
to investigate a specific event source.

You can specify conditions for any number of columns in the report. You can also specify
conditions for the same column multiple times, each with a different operator. To add more
conditions, click the icon. To delete a condition, click the icon. To add a separate set of
conditions, click the icon. To delete a group, remove all conditions within it.

Date
columns

Event data
columns

Add
condition

Delete
condition

Add condition group

Select Any
Criteria or
All Criteria.
140 Reporting Guide

Creating Wizard Reports
PROVIDING A SET OF VALUES FOR A COLUMN

Figure 4-12 begins to illustrate how to configure a condition that provides users with a choice of
values for a column. The figure below shows all available condition operators.

Figure 4-12: Specifying Conditions for a Column

As illustrated above, after you select a column from the column dropdown, you can select an
operator from the operator dropdown. By default, this field displays the is keyword. The table
below describes each of the operators.

Operator Explanation Example

contains matches values that include the specified
text

Windows matches:
• Windows Retriever Non-DC

• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

• My Windows server

does not contain matches values that do NOT include the
specified text

Non-DC matches:
• Windows Retriever DC

• Windows Snare DC

is exactly matches values that include ONLY
the specified text

Windows Retriever Non-DC
matches:
• Windows Retriever Non-DC

is not matches values that do NOT exactly
match the specified text

Windows Retriever Non-DC
matches:
• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

• Unix

• Linux

• Candy Bars

Click the value-field
icon to change
display type.

Select the
column.

3

1

2 Select the operator.

4 Select display type and
enter value(s) in the field.
Reporting Guide 141

Chapter 4: Creating and Editing Wizard Reports
Selecting an event-data column from the column dropdown causes a third field to display. This
third field enables you to specify text values relevant to the selected column. Click the icon or
dropdown to change the field type to one of the following:

Text Box—Allows run-time users to enter a value

You can leave the field empty.

Users can enter text to restrict the data returned or keep the field empty to return all values.

You can specify a default value.

Users can keep your value, change it, or clear the field to return all values.

Dropdown List—Provides a fixed list of values to run-time users

You specify multiple values and select one to display by default.

Users can keep your default value or select a different value from the dropdown.

ComboBox—Provides an editable list of values to run-time users

You specify multiple values and select one to display by default.

Users can keep your default value, overwrite your default value to specify their own value, or
select a value from the dropdown.

You specify multiple values and leave the field empty.

Users can enter valid text or select a value from the dropdown.

NOTE: You cannot delete a value that you enter accidentally in a Dropdown or ComboBox. You
must delete the entire criteria row and recreate it. To delete a criteria row, click the icon.

starts with matches values that begin with the
specified text

Windows matches:
• Windows Retriever Non-DC

• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

ends with matches values that end with the specified
text

DC matches:
• Windows Retriever Non-DC

• Windows Retriever DC

• Windows Snare Non-DC

• Windows Snare DC

Regular
Expression

matches the specified regular expression
NOTE
• A regular expression is written in a formal

language that interprets such text as specific
characters, words, or patterns of characters.

• If the search pattern includes a slash (/)
character, you must precede it with a
backslash (\) character.

• HawkEye AP supports Perl regular
expressions

To locate the following text:
default/:Report

Enter the following text:
default\/:Report

Operator Explanation Example
142 Reporting Guide

Creating Wizard Reports

R

To provide values in the condition-value field

1 Click the Text Field icon or dropdown to display the value-field display options.

2 Select the desired display type, enter text in the field, and press ENTER.

If the field is a Text Box, you are done. If the field is a Dropdown or ComboBox, the field clears.

The graphic below illustrates the first value entered in a Dropdown List.

NOTE:

In the example above, the report creator has changed the operator value from the default is keyword
to contains. If the report creator had kept the default operator, she must enter exact values in the
value-field. For example, to provide the run-time user with the value of Windows Snare Non-DC, she
must enter the full name. However, by using the contains operator, the report creator can enter text
that uniquely identifies the value without entering the full text.

In addition to enabling the creator to enter less text, the contains operator provides more flexibility for
the report. For example, because the value Snare matches both Windows Snare Non-DC and
Windows Snare DC, this same report could be run against systems that are part of a Windows
domain and those that are not.

3 If you are defining values for a Dropdown or ComboBox, enter a second text value into the field,
and press ENTER.

The field clears again. To view the text you have already entered, click the dropdown icon, as
shown below.

4 Repeat for each value to display in the dropdown.

NOTE: To create a dropdown list, display the desired default value in the text field. To create a
ComboBox, you can either leave the text field empty or display the desired default value. The
value displayed in the field determines default report results.
eporting Guide 143

Chapter 4: Creating and Editing Wizard Reports
Figure 4-13 illustrates two options that the user might see at runtime.

Figure 4-13: Runtime Options

ADDING A SECOND GROUP OF COLUMN CRITERIA

Figure 4-14 illustrates an after-hours report that locates users who logged into the system after
the close of business during the work week. Because the conditions have been set to match All
Criteria, the report returns data only if all three conditions are met—the user logged in between

User can enter a value in
the text field, select a value
from the dropdown, or
keep the field empty to

User can select a value
from the dropdown or
keep the default value.

ComboBox

Dropdown List
144 Reporting Guide

Creating Wizard Reports
Monday and Friday AND did so between 6:00 p.m. and 6:00 a.m AND the event source matched
the specified type (if one is specified).

Figure 4-14: One Condition Group that Matches All Criteria

To also return users who log into the system any time on Saturday or Sunday, you must specify
another condition. If you include this condition with the first group, the report will return results
only if all conditions are true. To cause the report to examine weekday data separately from
weekend data, you must add a second condition group. To do so, click the Add Group icon
illustrated in Figure 4-15
Reporting Guide 145

Chapter 4: Creating and Editing Wizard Reports
The figure below illustrates how to add a second condition group. The second group locates
users who log in only during the weekend.

Figure 4-15: Adding a Condition Group

The window above specifies criteria that returns users who logged into the system after the close of
business during the work week OR any time on either Saturday or Sunday. Because the match
dropdown between the two sets of criteria specifies or, the report returns data even if only one of
the two sets of conditions is true.

Step 3: Specifying Further Refinements

After you specify criteria that limits the data returned, you can further refine the data by:

Aggregating values in specific column(s) to create a summary report

Specifying the maximum number of rows to retrieve

Specifying a threshold for data display

Sorting the result set

If specifying more than one condition, specify

2

1

3

Add a new condition group.

Add a new condition
to the group.

4

Match either the
top condition group
OR
the bottom one.
146 Reporting Guide

Creating Wizard Reports
Figure 4-16 illustrates the default Report Wizard window for refining data.

Figure 4-16: Options for Further Refining Data

The next topics describe how to specify the maximum number of rows to return and how to sort
the returned data. Typically you will get familiar with your data by running your report and viewing
the output before you summarize its data and specify a threshold. Therefore, although you can
perform these operations from the Wizard, they are described in the section on editing the report.

For more information, see:

• “Specifying Maximum Number of Rows to Retrieve”, next

• “Specifying Column Sort”, on page 148

• “Running and Viewing the Wizard Report”, on page 149

• “Creating Summary Reports”, on page 154

• “Specifying a Threshold”, on page 159

• “Selecting, Renaming, and Ordering Columns for Display”, on page 132

Specifying Maximum Number of Rows to Retrieve

The number of rows that a report returns depends upon:

amount of data in its data source

selection criteria (date and column)

aggregation criteria; for more information, see “Creating Summary Reports”, on page 154

threshold; for more information, see “Specifying a Threshold”, on page 159

There are times you may want to view only a very small subset of data. For example, rather than
view all rows in a large data set, you might want to preview the kind of data returned. In this case,
you would want to return a small subset of the rows. Limiting the rows retrieved can be very
helpful when you test your report’s behavior.

The second of the refinements available from step 3 of the Report Wizard enables you to specify
the maximum number of rows retrieved by the report.
Reporting Guide 147

Chapter 4: Creating and Editing Wizard Reports
As illustrated in Figure 4-17, you can specify the number of rows from the top or bottom of the
data set.

Figure 4-17: Specifying the Maximum Number of Rows to Retrieve

IMPORTANT: If your EDW instance comprises multiple hosts and you configure the query
to return only the top or bottom subset of data, your query results may differ if you run
the query multiple times. To ensure that the query returns the same subset of data each
time, sort the data on at least one column. When the data is not sorted, the EDW might
retrieve data in a different order from different hosts in your EDW instance. In this case,
the top or bottom values returned are not consistent. For more information on a multi-
host EDW instance, see EDW Architecture in Chapter 1, “Introduction” in the
Administration Guide.

Specifying Column Sort

Sorting provides another way to make report data meaningful. As mentioned above, sorting also
ensures consistent data when you run the report on a multi-host EDW instance. The last of the
refinements available from step 3 of the Report Wizard enables you to specify column(s) for
sorting.

After you select top or bottom,
specify how many rows to
retrieve.
148 Reporting Guide

Running and Viewing the Wizard Report
As illustrated in Figure 4-18, you select the desired column(s) from the column dropdown. You
also select desired sort order from the order dropdown. You can select up to three columns for
sorting. Click the icon to add sort rows.

Figure 4-18: Specifying Sort Order

NOTE: At run time, users can select their own column for sorting. However, they can sort on only
one column at a time. For more information, see “Filtering and Sorting Report Data”, on page 46.

RUNNING AND VIEWING THE WIZARD REPORT

After you name your report, identify its data, specify its criteria, and refine it as desired, it is a good
time to test your report by running it. To run the report, click Finish or Finish and Run:

Finish and Run—HawkEye AP Console saves and closes the report definition, the Run Report
Status dialog opens, and the report begins running.

When the run completes, you can view your new report by clicking the icon from the All
Report Definitions window or the Run Report Status dialog.

Finish—HawkEye AP Console opens the report definition in Edit mode so that you can specify
additional formatting, such as changing column display, associating reports, or specifying a
chart display. After you complete this round of edits and save the report, you can run it from the
All Report Definitions window.

NOTE: The All Report Definitions tab remains open as the leftmost tab while you are in
Reports mode. If this tab remains hidden because multiple tabs display at the bottom of your
window, use the page-scroll icon, as documented in “Changing Focus to a Page”, on
page 32.

To run your new report, click the icon. The Run dialog displays, which enables you to
change the time range, column criteria, and namespace. After you make your changes in this
dialog, click Run. When the run completes, you can view your new report by clicking the
icon from the All Report Definitions window or the Run Report Status dialog.

For more information, see “Running a Report”, on page 100.

Add a new sort row.
Reporting Guide 149

Chapter 4: Creating and Editing Wizard Reports
Figure 4-19 shows the After Hours Logins on Windows report displayed in the All Report
Definitions list. The Latest Report Run column indicates that the report has been run three
times.

Figure 4-19: Viewing Your Report in the All Report Definitions List

Figure 4-20 illustrates some of the results displayed by the After Hours Windows Login report.

Figure 4-20: Viewing the Report Results

The report above illustrates how the derived columns, Date and Day of Week, facilitate creation
of a report that highlights after-hours activity.

If you run several different reports at the same time, you can minimize the Run Report Status
dialog while they run. The status bar automatically increments the number of reports run as each
report completes processing.

Click to open Run Report Status dialog
150 Reporting Guide

Editing a Wizard Report
If your report does not display as desired or if you are ready to refine the report, open the edit
window for the report and make the necessary changes. For more information, see “Editing a
Wizard Report”, next.

EDITING A WIZARD REPORT

After you run and test your report, you can refine it further by editing it. HawkEye AP Console
provides two ways to edit a report:

Batch editing

Use this mode when you want to make the same change to the default time range, time zone,
and/or namespace for multiple reports. For more information, see “Batch Editing Multiple
Reports for Time Range, Time Zone, and Namespace”, next.

Single editing

Use this mode to make changes to a report’s content or display, or to associate a report to
another report or to a security alert. For more information, see “Editing a Single Report”, on
page 153.

This section covers the following topics:

• “Batch Editing Multiple Reports for Time Range, Time Zone, and Namespace”, next

• “Editing a Single Report”, on page 153

• “Summarizing Data”, on page 154

• “Associating Reports to a Report or Security Alert”, on page 161

• “Formatting Columns”, on page 167

• “Defining Charts”, on page 171

Batch Editing Multiple Reports for Time Range, Time Zone, and Namespace

Typically the date range of a report defaults to "is yesterday". If you want to change this setting for
several reports and you want to save the new setting with the report definitions, you can open
multiple selected reports for batch editing.

Batch editing also enables you to save a different time zone and/or namespace for a selected set
of report definitions. For example, if your system stores the hosts table in both the Eastern and
Western namespaces, and a set of report definitions specifies Eastern as the default
namespace, you can use batch editing to change this default for a group of report definitions.
Reporting Guide 151

Chapter 4: Creating and Editing Wizard Reports
Figure 4-21 illustrates a user selecting the Batch Edit ... menu option on three selected reports.

Figure 4-21: Selecting Batch Edit on Multiple Reports

Figure 4-22 illustrates the Batch Edit dialog box that displays.

Figure 4-22: Batch Edit Dialog

Note that the Batch Edit dialog box displays only three fields: Date, Timezone, and Namespace.
Even reports that have been defined to display column-criteria rows display only these three fields
when opened for batch editing. To edit any other aspect of a report, you must edit one report at a
time. To do so, you select the report in the All Report Definitions list and either click the pencil
icon or right click and select Edit from the popup menu. The remaining topics in this section
describe the edits you can perform when you edit one report at a time.
152 Reporting Guide

Editing a Wizard Report
Editing a Single Report

Figure 4-23 illustrates the Edit window for a wizard report named User Login Summary on
Windows, which tracks all Windows logins and summarizes the results. This report displays six
columns from the userLogin_windows_nonDomainController view.

Figure 4-23: Edit Window for New Wizard Report

The tabs at the top of the window enable you to view and modify the following attributes of a
report:

• Data source—Allows you to view the report’s data source and the specific columns selected
for display.

You can use this tab to change the report description, the namespace, the columns displayed,
and the name and order of the columns displayed. You can also change the data source here.

NOTE:

If you change selected columns, your report definition may no longer run. At a minimum, you will lose
all your column-display settings and your chart definition. However, column changes can also affect
your column-criteria and summarize settings.

Unless you are selecting the same table or view from a different namespace, Sensage recommends
that you create a new report if you want to change the data source. For information on using this tab,
see: “Step 1: Specifying Where to Get the Data”, on page 129 and “Selecting, Renaming, and Ordering
Columns for Display”, on page 132.

Edit options
are grouped
in tabs
Reporting Guide 153

Chapter 4: Creating and Editing Wizard Reports
• Criteria—Allows you to view or change the time range and the column criteria to limit the data
returned. For information on using this tab, see “Step 2: Specifying What Data to Return”, on
page 133 and “Column Criteria: Limiting the Number of Returned Rows”, on page 139.

• Summarize—Allows you to aggregate, group, and sort the report data. For more information,
see “Summarizing Data”, next.

• Properties—Allows you to associate reports to your report, and to specify layout and display
options. For more information, see “Associating a Report to Another Report”, on page 161,
“Associating a Report to a Security Alert”, on page 164, and “Specifying Print Options and
Maximum Rows”, on page 166.

• Column Display—Allows you to format column width and column header text, and to change
column data type. For more information, see “Formatting Columns”, on page 167.

• Chart—Allows you to change output format from table to chart and to select the desired chart
style. For more information, see “Defining Charts”, on page 171

NOTE: Click Revert to undo all changes made since the last time you saved the report. When
you revert changes, all changes made in any or all tabs revert to their status as of the last save.

Summarizing Data

This section includes the following topics:

• “Creating Summary Reports”, next

• “Specifying a Threshold”, on page 159

Creating Summary Reports

You can add meaning to a report by aggregating data in one or more of its columns. Aggregating
data groups multiple rows as a single row and can dramatically reduce the number of rows
returned.

BACKGROUND: UNDERSTANDING AGGREGATION

Figure 4-24 illustrates a report that aggregates the data in the result set. The aggregation
summarizes the number of user logins on a Windows system that is not part of a domain. The
report groups the columns in the result set as part of the aggregation process. When the EDW
aggregates the data, it examines all rows in the result set and returns one row for each unique
combination.
154 Reporting Guide

Editing a Wizard Report
The report below returns only 193 rows. When run against the same example data set without the
calculation, the same report returns 1583 rows.

Figure 4-24: Summarizing and Grouping Data

NOTE: The aggregation process groups unique values in the order that the columns display,
from the left to the right. In the example above, the aggregation process first groups unique
values in the Event Source column. The grouped data determines the first data break. Because
this data represents two different event sources (Windows Snare Non-DC and Windows Retriever
Non-DC), the data first breaks on this column.

The aggregation process next groups the data in Information System, the second displayed
column. Because Windows Retriever Non-DC received all its events from the same server
(TESTAD23), the value of Information System does not affect the data break. A data break occurs
only when a value changes. Therefore, because Windows Snare Non-DC received events from
many information systems, the Information System values for this event source break into
multiple rows.

The aggregation process looks at the next column, which is the Result column. Because only
one value displays for each event source (Failure or Success), the data does not break further
for this column.

The grouping of the data becomes clear as we examine the Event ID column. The value of this
column determines the final data breaks for most of the rows. Note that Windows Retriever breaks
into one row for each event ID. However, Windows Snare displays multiple rows for the 528 event
ID because each row is unique to the information system as well as to the event ID.

Note also that the Event ID column does not determine the final data break for all Windows Snare
Non-DC events. Two rows represent successful logon (528) on the ANTLIA system and another
two rows represent successful network logon (540) on the APHRODITE system. Because the
Reporting Guide 155

Chapter 4: Creating and Editing Wizard Reports
Event Description column represents the same data as the Event ID column, data does not
break further based on event description. However, the Windows Snare rows that did not break
on the value of their Event ID column do break on the value of their Date column. Figure 4-24
illustrates the significant values in these four rows by enclosing them in red boxes.

NOTE: The date column you select in Step 1 of the Wizard can dramatically affect your report
result set. As illustrated in Figure 4-3 on page 132, the Date and Time column represents data
down to the second whereas the Date column represents only whole days. Therefore, a report
that contains the Date and Time column represents a granularity of data very different from one
that contains the Date column. If you summarize data in these two reports, the granularity of the
data significantly changes the results.

For example, if this report had used the Date and Time column instead of the Date column and
had been run against the same example data, the report would have returned many more rows.
Instead of 33 rows of unknown user or bad password, there would have been multiple rows, most
with a count of 1. The different results depend on the granularity of the stored data. The Date
column differentiates February from March. The Date and Time column differentiates this minute
and second from the last minute and second and the next minute and second. When seconds are
part of the grouped data, most rows are unique; thus the count of 1.

Figure 4-25 illustrates a report that uses the Date and Time column instead of the Date column.
The report below displays a small subset of the rows returned.

Figure 4-25: Granularity of Data Determines Result Set

As illustrated in Figure 4-24, the example data set has 33 rows when Windows Retriever Non-DC
is the source and the Event Description column represents Unknown user or bad password. In
the report illustrated in Figure 4-24, these 33 rows are grouped into a single row because all of

Data in this column affects the
aggregation even though data in
all other columns is identical.

Many more rows are returned.
156 Reporting Guide

Editing a Wizard Report
these events occurred on February 28, 2007. When the report uses the Date and Time column
instead of the Date column, the aggregated report contains a separate row for each of these
events; each row displays a count of 1.

IMPORTANT: When you aggregate the data in one or more columns, all data not in the
aggregated column or columns is grouped in relation to the aggregated data. The
granularity of data in all non-aggregated columns determines the groups that result from
the aggregation. For an example of how the derived date columns display data, see
“Step 1: Specifying Where to Get the Data”, on page 129.

SUMMARIZE TAB: AGGREGATING DATA

The Summarize tab facilitates the creation of a report that performs a count like the one whose
results display in Figure 4-24. Figure 4-26 illustrates the window that enables you to configure the
report to count the values returned by the report.

Figure 4-26: Specifying a Count and Grouping Remaining Columns

As illustrated above, the Count * operation has been specified for the User Login Summary on
Windows report. As described in “Background: Understanding Aggregation”, on page 154, the
report groups the columns in the result set as part of the aggregation process. When you select
the Count * operation, the report returns a count for each group of rows.

For example, assume the report returns only the count and the data from the Event Source
column. In this case, it groups all values in the Event Source column before it performs the
count. In other words, it would group all rows that contained Windows Retriever as the event
source and all rows that contained Windows Snare and then it would count the instances of

Summarize
Tab

Add rows to
aggregate
Reporting Guide 157

Chapter 4: Creating and Editing Wizard Reports
Windows Retriever and Windows Snare. The result set would display one row for each event
source, each with a unique count. Figure 4-27 illustrates such a report.

Figure 4-27: Example of a Summary Report that Displays One Event-Data Column

If you modify the report to also return data from the Information System column, the report
groups values by both the Event Source and the Information System columns before it
performs the count. In other words, it groups the Windows Snare rows by each information
system and then it counts the groups.The result set displays one row for each event source/
information system group, each with a unique count. Figure 4-28 illustrates such a report.

Figure 4-28: Example of a Summary Report that Displays Two Event-Data Columns

Because the example data shows only one system sending data through Windows Retriever, this
event source is grouped into a single row with a count of 78. However, because many systems
send data through Windows Snare, this event source is grouped into multiple rows, each with
their own count.

If you create a report that returns only the count, it returns a single column with a single row of
data. Figure 4-29 illustrates such a report.

Figure 4-29: Example of a Summary Report that Displays Only a Count

Because a summary report that contains multiple columns provides meaningful data only when
the non-aggregated columns are grouped, the Report Wizard automatically groups every column
that is not aggregated. The Report Wizard also sorts the columns in ascending order. You can
158 Reporting Guide

Editing a Wizard Report
specify a descending sort order for specific columns. As illustrated in Figure 4-18, you can select
Descending from the dropdown next to each column row.

NOTE: Typically, you can keep the default grouping order. However, if your report includes the ts
column as the first or one of the first columns, HawkEye AP recommends that you move this
column lower in the list. Grouping by the ts column can slow performance significantly. To
change the column display order, use the Data Source tab or the Column Display tab. For more
information, see “Selecting, Renaming, and Ordering Columns for Display”, on page 132 and
“Changing Column Width and Relative Position”, on page 167

For an example of a summary report with many columns, all of which are grouped in their display
order, see “Background: Understanding Aggregation”, on page 154.

The Report Wizard provides several aggregation operations besides count *. The other
operations, which can be applied only to columns that contain numeric values, are available from
the Aggregation dropdown. These are:

Total

Minimum

Maximum

Average

Although Figure 4-26 illustrates only one aggregation operation, you can click the icon to add
rows and specify aggregation on multiple columns or different operations on the same column.
For example, Figure 4-30 illustrates the Minimum and Maximum aggregation applied to the Event
ID column. The Report Wizard names each aggregation column automatically. You can change
the name to your liking.

Figure 4-30: Aggregating a Numeric Column

Specifying a Threshold

As discussed in “Specifying Maximum Number of Rows to Retrieve”, on page 147, there are
many ways to limit the number of rows a report returns. This topic presents yet another way you
Reporting Guide 159

Chapter 4: Creating and Editing Wizard Reports
can meaningfully limit the rows returned. You can set a threshold to eliminate groups that have
been aggregated for your report.

For example, Figure 4-24 illustrates a report that aggregates data by counting values in each
grouped row. The example report returns 9 rows that group results for Windows Retriever Non-
DC. Some of these groups represent a single event, as shown by the value of 1 in the Count
column. Some groups represent multiple events.

To display only the groups that represent more than 25 events, you could filter the Count column
in the result set. Figure 4-31 illustrates report output that uses the filter option to eliminate groups.
The figure below circles the filtered column.

Figure 4-31: Eliminating Groups by Filtering

For more information, see “Filtering and Sorting Report Data”, on page 46.

Specifying a threshold has a similar affect as filtering. However, the threshold is saved with the
report definition so the filtering occurs automatically every time the report runs. The threshold
causes the report to return only the filtered rows.

Figure 4-32 illustrates how you would specify a threshold of 25 for the Count column, which is
created when the report results are aggregated.

Figure 4-32: Specifying a Threshold

Select numeric column(s)
whose values you want to
limit.

Select a comparison value. Specify the threshold value.3

2

4

Specify an aggregation.
1

160 Reporting Guide

Editing a Wizard Report
Associating Reports to a Report or Security Alert

After you are satisfied with a report that you have created, you can associate the report to another
report or to a security alert. Although the association process is similar, you use the Properties
tab in report-edit mode to associate a report to another report and you use Administration mode
to associate a report to a security alert.

NOTE: As documented in“Browsing to Other Reports”, on page 57, dashboard users who view a
report widget or security alert widget can open any report on the system that they have
permission to access. Associated reports, however, provide a quick list of suggested reports.

This topic covers the following:

• “Associating a Report to Another Report”, next

• “Associating a Report to a Security Alert”, on page 164

Associating a Report to Another Report

The Properties tab enables several operations, which include Associate reports to your report.
Typically, detailed reports are linked to summary reports to allow users to easily drill down to
specific data in the summary report. The associated reports enable users to conduct
investigations that examine the same set of data in more than one report.

The user selects the data to examine from one of the columns in the summary or source report.
The selected data populates the column criteria field(s) of the associated report, which returns
only rows that pertain to the selected value. Because the associated report limits results to the
user-selected value, each report you associate must have at least one column criteria field. The
user can investigate data only in columns that have a corresponding column criteria field in the
associated report.

If the user selects more than one value, all selected values display in a dropdown, regardless of
the style defined for the value field. The user selects one value from the dropdown and runs the
report, which returns only rows that match the selected value. The user must run the report
separately for each of the other selected values.
Reporting Guide 161

Chapter 4: Creating and Editing Wizard Reports
Figure 4-33 illustrates how to use the Properties tab to associate reports.

Figure 4-33: Associating Reports to a Report

The operation illustrated above associates three reports simultaneously to the User Login
Summary on Windows report. To select multiple reports, use the standard interface keys:

Contiguous reports—select the first report; SHIFT-CLICK as you select the last report

Non-contiguous reports—select the first report; CTRL-CLICK as you select each additional
report

At runtime, the user can investigate data in any or all of the reports you associate. Figure 4-34
illustrates a user selecting three values from the Event Description column and right-clicking to

Drag report widget(s)
to workspace
162 Reporting Guide

Editing a Wizard Report
display the popup. From the popup, the user chooses to run one of three associated reports: the
User Login Details on Windows.

Figure 4-34: Selecting Multiple Column Values for an Associated Report

After the user selects the associated report, its Run dialog displays, as illustrated in Figure 4-35.
All three values selected from the source report display in each criteria-column dropdown of the
associated report. In other words, if the Run dialog provides multiple criteria rows, each
representing a different column in the source report, each dropdown displays all user-selected
values.

Figure 4-35: Running the Associated Report on Selected Data

The user selects the desired value from the appropriate dropdown, which is Event Description in
the current example, and deletes the other two column criteria rows by clicking the icon. If
Reporting Guide 163

Chapter 4: Creating and Editing Wizard Reports
none of the column-criteria rows represent the desired column, the user can select the desired
column from the column dropdown.

Figure 4-36 illustrates the results of running the associated reports with one of the values in the
Event Description dropdown.

Figure 4-36: Associated Report Results

Associating a Report to a Security Alert

BACKGROUND

As documented in “Associating a Report to Another Report”, on page 161, you can associate
detailed reports to summary reports to allow users to easily investigate specific data in the
summary report. The associated reports enable users to conduct investigations that examine the
same set of data in detail in more than one report.

As documented in “Launching Associated Reports”, on page 69, a dashboard user can select
value(s) from a column in a security alert and open associated report(s) that enable the user to
conduct investigations on that data.

Figure 4-37 illustrates a security alert as it displays in the dashboard. In the screen shot below, the
user is about to launch one of two associated reports for the Src IP column. The user has
selected data in one of the alert columns and has right-clicked to display the reports associated
to that column.

Figure 4-37: Launching an Associated Report

After the user selects the desired report, its Run dialog displays. All of its column-criteria fields
contain the value that the user selected. For more information on launching the report, see
“Launching Associated Reports”, on page 69.
164 Reporting Guide

Editing a Wizard Report
HOW DO YOU ASSOCIATE A REPORT TO A SECURITY ALERT?

The process to associate a report to a security alert is similar to the one to associate a report to
another report. There are two primary differences, however:

Instead of using the Properties tab in Report edit mode to associate a report, you use
Administration mode to associate a report to a security alert.

NOTE: You must be assigned to the analyzer.admin role to access Administration mode.

You associate reports separately to one or more of six columns: source IP address (Src IP),
destination IP address (Dest IP), source user (Src User), destination user (Dest User), source
port (Src Port), and destination port (Dest Port).

The user can select the data to examine only from one of these six columns in the security alert.
The selected data populates the column criteria field(s) of the associated report, which returns
only rows that pertain to the selected value. Because the associated report limits results to the
user-selected value, each report you associate must have at least one column criteria field that is
relevant to the selected column. The user can investigate data only in columns that have a
corresponding column criteria field in the associated report. For example, if you associate a
report to the Src IP column, the associated report should have at least one column-criteria field
for the Src IP column.

If the user selects more than one value, all selected values display in a dropdown. The user
selects one value from the dropdown and runs the report, which returns only rows that match the
selected value. The user must run the report separately for each of the other selected values.
Reporting Guide 165

Chapter 4: Creating and Editing Wizard Reports
Figure 4-38 illustrates the window in which you associate reports to security alerts and the steps
to associate a report.

Figure 4-38: Associating Reports to a Security Alert

The window above displays when you select the Associated Reports for Alerts module from the
Navigator in Administration mode. As illustrated above, you select each column separately and
drag only reports relevant to that column to the workspace.

For an illustration of how you can drag multiple reports simultaneously, see Figure 4-33. For an
explanation of how to write a parameterized SQL query that provides criteria rows for multiple
columns, see “Defining Parameters for an Associated Report”, on page 194.

NOTE: HawkEye AP Analytics includes the Investigation Event Report, which queries all tables in
the EDW. This special report was designed to query the EDW for events related to security alerts.
Associate this Analytics report to a security alert to maximize your users’ investigation options.

Specifying Print Options and Maximum Rows

In addition to the associate reports to a report option, the Properties tab enables several other
operations:

Specify print options:

Paper size—select the desired paper size

Orientation—either landscape or portrait orientation

Title Page—select one or more pieces of metadata to display on the title page; options include the
report name, the properties associated with the report in the All Report Definitions list, and a
namespace

Select the column that will
provide the data to the
associated report.

2

1

Drag report widget(s)
to workspace
166 Reporting Guide

Editing a Wizard Report
Margin—click to display a dialog that enables you to choose between inches or centimeters and to
specify margin size at the top, bottom, right, and left.

Specify the maximum rows to display on each page for cached reports

Figure 4-33 illustrates the Properties tab.

Formatting Columns

The Column Display tab provides several options for formatting result columns. This tab enables
you to configure:

Width of each column

Relative order of columns

Display name of each column

Data type of each column

Font style, size, and color of each heading and its data

Changing Column Width and Relative Position

Figure 4-39 illustrates two ways you can change column width from the Column Display tab.

Figure 4-39: Changing Column Width

The graphic above illustrates two different ways to change column width:
Reporting Guide 167

Chapter 4: Creating and Editing Wizard Reports
As indicated by the resize cursor to the right of the Event Description column header, you can
resize column width by dragging the header boundary to the left or right.

As indicated by the highlighted width units in the Column-Width row of Event Description, you
can double-click the width value and overwrite it.

You can also reorder columns. Figure 4-40 illustrates the same report as above but the Event
Description column now displays to the left of Event ID. The report below also illustrates new
column sizes for the result and the Event Description columns.

Figure 4-40: Changed Column Width and Display Order

To change relative display of a column, grab its header and drag it to the desired location.
168 Reporting Guide

Editing a Wizard Report
Changing Column Name and Data Type

Figure 4-41 illustrates the Data Type dialog, in which you can change column name and data
type. The changes you make here affect display only and not the way this information is stored in
the EDW. Click in the Type cell of the desired column to display the Data Type dialog.

Figure 4-41: Changing Column Name and Data Type

The Column Name section of the Data Type dialog displays the name of the column as stored in
the EDW (Original column name) and provides an entry field in which you can rename it for
display.

The Data Type section of the Data Type dialog enables you to change the display data type.

The display choices in the Display data type dropdown depend on the column data type:

Text—Text, Whole Number, Decimal Number, Host, URL, and IP_Address

Text—uses standard text sorting

Whole Number—uses standard numeric sorting

Decimal Number—uses standard numeric sorting

Host—uses standard text sorting.

URL—sorts columns of text as web addresses

IP Address—uses standard text sorting.
Reporting Guide 169

Chapter 4: Creating and Editing Wizard Reports
Numeric—Whole Number and Text

Timestamp— Timestamp

Formatting Font, Alignment, and Color

You can separately change the font type, style, and size for each column header and its data
values. As illustrated in Figure 4-42, you can also specify horizontal alignment, font color, and
background color.

To access these display options, click More Options.... from the Column Display tab.

Figure 4-42: Formatting Column Display

The graphic above illustrates the More Options dialog open to the Column Header tab. It also illustrates
the Choose Text Color dialog that displays when you click Custom from the Alignment & Color
pane.

Each column name displays in a list on the left. Currently the user has selected the Event Source
column and is formatting its header properties. To format its data values, the user would select
the Data tab. To format a different column, the user would select the column from the list on the
left.
170 Reporting Guide

Editing a Wizard Report
Defining Charts

The Chart tab enables you to format data as one of several different types of chart. Figure 4-43
illustrates the Chart tab window as it first displays and as the user selects a bar chart style.

Figure 4-43: Formatting Chart Display

NOTE: Select Other to display line chart style.

2

1

3

Reporting Guide 171

Chapter 4: Creating and Editing Wizard Reports
Figure 4-44 illustrates bar-chart display with one column selected for Y axis and two columns for X
axis.

Figure 4-44: Formatting a Report as a Bar Chart

By default only a chart title displays. As illustrated above, the user has also specified a subtitle. In
addition to selecting the values to display from the Category and Value fields, you can specify:

bar color(s)—for more information, see Figure 4-45

maximum number of rows to display

report layout (relative position of chart and table)

information to display—for more information, see Figure 4-45

You can label the chart data in several ways:

Category Label — displays the name of the Category column(s)

The example above displays two Category columns (Information System and Event Source).
These names display vertically along the left side of the example chart.

Category Title — displays the data in the Category column(s)

The example above displays data from both Category columns; for example, fake host and
Unix su.
172 Reporting Guide

Editing a Wizard Report
Value Label — displays the name of the Value column(s)

The example above displays two Value columns (Number Successful and Number Failed).
These names display horizontally at the bottom of the example chart.

Value Title — displays the data in the Value column(s)

The example above displays integers that indicate the value of data in both Value columns.

NOTE: If the text that displays in a Category Label or Value Label exceeds 25 characters, it is
truncated to 25 characters followed by three periods (...). If this length is insufficient at your site,
your administrator can modify the length in the chart.max.axis.label.length property of the
vendor.prop file. The vendor.prop file is documented in HawkEye AP Console Installation and
Configuration in Chapter 2, “Configuring HawkEye AP” of the Installation, Configuration, and
Upgrade Guide.

Figure 4-45 illustrates color selection and the full set of information fields.

Figure 4-45: Selecting Bar Colors and Setting Display Information

Click current color to
display color palette
Reporting Guide 173

Chapter 4: Creating and Editing Wizard Reports
After you configure a report to display as a chart, both the chart and tabular format display when
you view the report in Reports mode. You can use the Options Pane to display only chart format
or only table format, as illustrated in Figure 4-46.

Figure 4-46: Viewing a Report as Chart and Table in Reports Mode

Although both the chart and tabular format display when you view the report in Reports mode,
Dashboards mode displays only one format style at a time. By default, when you drag the widget
for this report onto a dashboard page, only the chart displays. To display both formats on the
same page, drag the same widget twice. Then use the dashboard Options Pane to modify display

Click to display
chart only or
table only.
174 Reporting Guide

Editing a Wizard Report
of one widget to table format. Figure 4-47 illustrates how you would change display of the lower
widget from chart to table.

Figure 4-47: Viewing a Report as Chart and Table in Dashboards Mode

Click to display
tabular format
only.

2

1 Select one report widget.
Reporting Guide 175

Chapter 4: Creating and Editing Wizard Reports
176 Reporting Guide

CHAPTER 5

Creating and Editing SQL Reports

This chapter contains the following sections:

• “Overview of SQL Reports”, next

• “Creating a SQL Report”, on page 177

• “Running and Viewing the Report”, on page 181

• “Editing the SQL Report”, on page 183

• “Viewing and Changing a SQL Report That Has Been Run”, on page 199

OVERVIEW OF SQL REPORTS

To create a SQL report, you enter a SQL query directly into the SQL tab window. A query is a
Sensage SQL statement that extracts event-log data from the EDW data store. Creating a SQL
report requires knowledge of SQL and HawkEye AP extensions to the language.

When you create a SQL report, you can define more advanced queries than you can when you
create a Wizard report. For example, a SQL report enables you to include conditional statements,
HawkEye AP functions, libraries, and nested queries that use the results of one query as the input
to the next.

NOTE: Many Sensage SQL extensions are embedded in the views that HawkEye AP delivers with
its Analytics reports. When you base a Wizard report on one of these views, you indirectly take
advantage of these powerful extensions. However, if you base your report directly on a table, you
must create a SQL report if you want to include conditional statements or libraries or use
functions that take advantage of the SQL extensions.

For information on the SQL query language and the HawkEye AP extensions to it, see Chapter
10: Sensage SQL and Chapter 11: SQL Functions.

CREATING A SQL REPORT

There are several steps to creating a SQL report:

“Specifying the Report’s Name, Description, and Namespace”, next

“Entering the Query”, on page 179

“Specifying a Time Range”, on page 180

Specifying the Report’s Name, Description, and Namespace

To create a SQL report, select New SQL Report Definition from any Action Menu or right-click
menu in Reports mode.
Reporting Guide 177

Chapter 5: Creating and Editing SQL Reports
Figure 5-1 illustrates the first window that displays when you begin defining a new SQL report
definition.

Figure 5-1: Specifying the Report’s Name, Description, and Namespace

As illustrated above, the first window in SQL-report creation provides the following fields:

Report Name—Every report must have a unique name. Depending on your permissions, you
might not see all reports in the All Report Definitions list. However, you cannot name a report
identically to one that already exists in your system. The system notifies you if the name you
enter is a duplicate.

Report Description—The description, which is optional, displays in the All Report Definitions
window and can be very helpful to users who have many reports in the All Report Definitions
list.

Data Source—If you have access to more than one namespace, the Data Source dropdown
prompts you to select a namespace. If you have access to ten or more namespaces, the Select
Namespace dialog displays. This dialog enables you to choose from all available
namespaces. If you have access to only one namespace, its name displays in the Data Source
field. For information about how HawkEye AP groups tables and view in namespaces, see
“Namespaces: Using a Single Report or Dashboard to Access Different Data”, on page 43.

Clear Cache Entries on structural changes—When this box is checked, all cache entries for
this report are deleted any time you make changes to this report definition and save those
changes. If you leave this box unchecked and change the report definition, you will not be able
to save those changes until you first delete all cache entries for the report. If you try to save
changes to a report definition that has existing cache entries, you will see a warning message
178 Reporting Guide

Creating a SQL Report
but at that point, the only way to keep any changes is to copy the SQL and paste it into a new
report.

It may be useful to check this box when iteratively developing and debugging a report, so that
you do not have to manually delete cache entries after each test run of the report. When the
report is ready for use in a production environment, Sensage recommends that you uncheck
this box so that cache entries are not unexpectedly deleted.

Entering the Query

Click the SQL tab to move to the next window.

Figure 5-2 illustrates the window in which you enter the query that retrieves and formats data for
your report.

Figure 5-2: Entering the SQL Statement

As illustrated above, you write your query directly in the SQL pane. The query above creates the
same report as the one illustrated in “Editing a Wizard Report”, on page 151. Both reports retrieve
data from the userLogin_windows_nonDomainController view.

The final clause of the SQL statement is DURING ALL, which represents the time range covered by
the result set. Most queries of event-log data involve a specific time frame, whether “yesterday”,
“last year,” or “1 hour ago.” To facilitate these types of queries, Sensage SQL supports the
proprietary DURING clause, which specifies the time range for the query.

The DURING clause works with the ts timestamp column, which is mandatory in every event-log
table. The SQL query engine matches the time range specified in the DURING clause with values in
the ts column of the table. Only rows that match the time range are included in the result set.

When a query is run directly against the EDW, the DURING clause can contain a specific time
range. However, when a report query is run from HawkEye AP Console, the only recommended
Reporting Guide 179

Chapter 5: Creating and Editing SQL Reports
value for the DURING clause is "DURING ALL". At run time, HawkEye AP replaces all instances of
DURING ALL with the time range saved with the report, or specified when the report is run from
Reports mode, or by the schedule that runs the report. In other words, when the report query
specifies "DURING ALL", the report runs with the date criteria specified in the report definition or at
run time. However, if the report query specifies a date period, the report always runs on that
period and neither a schedule nor the run-time user can change the date period.

For more information, see:

“Specifying a Time Range”, next

“Parameterizing Your Query”, on page 184

NOTE: If the query specifies a start date and time and end date and time, the report always uses
those times when it runs, regardless of what the user enters at run time.

The example query illustrates using the count() aggregation function and the timef() time-
formatting function.

For information on these functions, see:

counting values in a column—“Aggregation Functions”, on page 337

formatting a date value— “_timeformat(), _timef()”, on page 380

Specifying a Time Range

Click the Criteria tab to move to the next window. Figure 5-3 illustrates the window in which you
can specify a default time range and, optionally, column criteria. This topic discusses specifying
date criteria. For information on specifying column criteria, see “Parameterizing Your Query”, on
page 184.
180 Reporting Guide

Running and Viewing the Report
The Date dropdown displays all available date options.

Figure 5-3: Specifying Date Criteria

A illustrated above, there are several options for limiting the time range. For more information, see
“Date Criteria: Specifying Time Range”, on page 134. Use this window to provide a default time
range. Your range can be overridden by a user or schedule that runs the report.

IMPORTANT: If your SQL query selects all columns in a table or view and you specify
date criteria that covers a long period, the report results can fill your disk.

RUNNING AND VIEWING THE REPORT

After you name your report, identify its namespace, and enter the SQL query, it is a good time to
test your report by running it. When you run the report, you can keep your definition window
open. To run the report, click the All Report Definitions tab that remains open as the leftmost tab
while you are in Reports mode.

If the All Report Definitions tab remains hidden because multiple tabs display at the bottom of
your window, use the page-scroll icon, as documented in “Changing Focus to a Page”, on
page 32.
Reporting Guide 181

Chapter 5: Creating and Editing SQL Reports
Figure 5-4 shows the new “Count Event Source” report displayed in the All Report Definitions list.
The definition for this report remains open and accessible for editing. The Latest Report Run
column indicates that the report has not yet been run.

Figure 5-4: Running a SQL Report While Its Definition Remains Open for Editing

To test the new report, click the icon or click Run from the workspace Action Menu. A dialog
displays that enables you to specify the time range and time zone and to change the namespace.
After you make your changes in this dialog, click Run.

For more information, see “Running a Report”, on page 100.

When processing complete, the Run Report Status dialog provides the icon, which enables
you to view the report. This icon is also available from the Actions column of the All Report
Definitions list. Click this icon to verify that your report displays as desired.

Figure 5-5 illustrates the results of running the “Count Event Source” report.

Figure 5-5: Viewing the Report Results

NOTE: To delete a SQL report definition, close the definition window and delete the report from
the All Report Definition table. For more information, see “Deleting Report Definitions”, on page
118.

New SQL report displays with all
other report definitions

New SQL report definition
remains open for editing
182 Reporting Guide

Editing the SQL Report
EDITING THE SQL REPORT

After you run and test your report, you can refine it further by editing it. HawkEye AP Console
provides two ways to edit a report:

Batch editing

Use this mode when you want to make the same change to the default time range, time zone,
and/or namespace for multiple reports. For more information, see “Batch Editing Multiple
Reports for Time Range, Time Zone, and Namespace”, on page 151.

Single editing

Use this mode to make changes to a report’s content or display, or to associate a report to
another report or to a security alert. This section documents these options in detail.

As illustrated in Figure 5-2, the window for creating and editing a single SQL report has five tabs:

Data Source—You have already used this tab to name and describe the report and to select its
namespace; see “Creating a SQL Report”, on page 177.

SQL—You have already used this tab to enter your query. You can also use this tab to:

Edit the SQL to provide the run-time user with options to restrict the data returned and a choice of
views or tables against which to run the report; for more information, see “Parameterizing Your Query”,
next.

NOTE: If you change the query in any way, a dialog displays that informs you that, if you
have modified column display or defined a chart for the report, you will lose all your column-
display settings and the chart definition. You will be prompted to continue or cancel
changing the report structure.

Link a library to your query; for more information, see “Adding a Library to Your Query”, on page 195.

Criteria—You have already used this tab to specify the default time range. You can also use
this tab to create criteria rows that allow the user to select or specify values at runtime. For
more information, see “Specifying a Time Range”, on page 180 and “Parameterizing Your
Query”, next.

Properties—This tab provides the same functionality for both Wizard and SQL reports; for
information, see “Associating a Report to Another Report”, on page 161, “Associating a Report
to a Security Alert”, on page 164, and “Specifying Print Options and Maximum Rows”, on page
166.

Column Display—This tab provides the same functionality for both Wizard and SQL reports;
for information, see “Formatting Columns”, on page 167.

Chart—This tab provides the same functionality for both Wizard and SQL reports; for
information, see “Defining Charts”, on page 171.

NOTE: Click Revert to undo all changes made since the last time you saved the report. When
you revert changes, all changes made in any or all tabs revert to their status as of the last save.

This section contains the following topics:

• “Parameterizing Your Query”, next
Reporting Guide 183

Chapter 5: Creating and Editing SQL Reports
• “Adding a Library to Your Query”, on page 195

• “Creating a Library”, on page 197

Parameterizing Your Query

“Creating a SQL Report”, on page 177, describes the initial steps to create a report. This section
describes how to edit the initial report to provide the user with run-time options.

This section covers the following topics:

• “Background”, next

• “Adding Parameters to the SQL Query”, on page 185

• “Creating Parameter Fields That Display to the User”, on page 187

• “Running and Testing the Parameterized SQL Report”, on page 189

• “Adding a Parameter to the HAVING Clause”, on page 190

• “Adding a Parameter to the FROM Clause”, on page 191

• “Relevant Documentation”, on page 195

Background

A parameterized report enables users to specify filter criteria at runtime that customizes report
output. The user does not need to directly edit the underlying SQL. The user also does not need
to run a report that returns all values and requires the user to filter them in the HawkEye AP
Console (see “Filtering and Sorting Report Data”, on page 46).

You can also create a parameterized report that provides run-time users with a choice of data
sources against which to run the report.

Steps to Parameterizing a SQL Report

1 Use the SQL tab to add parameter(s) to the query.

See “Adding Parameters to the SQL Query”, on page 185.

2 Use the Criteria tab to add criteria row(s) to the Column Criteria pane.

Each row represents a single parameter.

Each row identifies the parameter name, specifies a label that clarifies the value choice, and provides
the value(s) offered to the user.

NOTE: The parameter name identified in each row must be identical to the one used in the
query, but do not include the dollar sign ($).

See “Creating Parameter Fields That Display to the User”, on page 187.

3 Run and test the report with the parameters.

See “Running and Testing the Parameterized SQL Report”, on page 189.
184 Reporting Guide

Editing the SQL Report
Adding Parameters to the SQL Query

HawkEye AP Console provides SQL parameters as a simplified way to add macros to your query.
As documented in “Macros”, on page 302, a macro is a processing directive that declares a
constant value for use within a SELECT statement. Macro definitions have the following syntax:

WITH $<id> AS <value> [OVERRIDE][, $<id> AS <value> [OVERRIDE] [...]]

The SQL query engine replaces each occurrence of $<id> after the declaration with the constant
value. The values of macros remain constant throughout the execution of SELECT statements.
Macros are similar to literal constants, not programming variables. You declare the constant value
in one location, and the value is used wherever the macro identifier is encountered in the
remainder of the SELECT statement.

When you define a SQL parameter in HawkEye AP Console, you do not use the macro syntax
shown above. Instead, you declare the macro as a parameter in the Criteria tab. However, you
reference the parameter in the query just as you would reference the macro. In other words, you
can use a parameter everywhere in a SQL statement that accepts a string value, but not
everywhere that accepts a string. Typically this means that you include a parameter in a FROM,
WHERE, or HAVING clause, but not in other clauses, such as SELECT or GROUP BY. For more
information on parameter restrictions, see “Adding a Parameter to the HAVING Clause”, on page
190

Like a macro, you reference a parameter in a query by including it in an expression as a constant
value and preceding its name with a dollar sign ($). For example, the following WHERE clause
references the EVENT_DESCRIP parameter, which represents a value in the Event Description
column:

WHERE event_description = $EVENT_DESCRIP

The following example query illustrates two parameters in its WHERE clause.

SELECT
_timef("%Y-%b-%d",ts) as "Date",

 log_type AS "Event Source",
 info_sys AS "Information System",
 result AS "Result",
 event_id AS "Event ID",
 event_description AS "Event Description",
 count (*) AS "Count"
FROM

userLogin__windows__nonDomainController
WHERE
 log_type LIKE ('%' + $EVENT_SOURCE + '%')
 and
 event_description = $EVENT_DESCRIP
GROUP BY
 1,2,3,4,5,6
DURING ALL

The boldface text in the query above highlights the statements that include a parameter. The first
WHERE clause statement, which uses the LIKE comparison operator, includes the parameter in a
string expression.

NOTE: To simplify the documentation, the first WHERE clause statement uses the LIKE operator,
which is a standard SQL operator. To enhance performance, Sensage recommends that you use
Reporting Guide 185

Chapter 5: Creating and Editing SQL Reports
its _strstr() function instead. The following version of the WHERE clause statement maximizes
performance:

WHERE
_strstr(log_type,$EVENT_SOURCE) >-1

 and
 event_description = $EVENT_DESCRIP

For more information, see “_strstr()”, on page 358.

Figure 5-6 illustrates how these two parameters display at run time.

Figure 5-6: Displaying Two WHERE Clause Parameters at Run Time

UNACCEPTABLE AND PROBLEMATIC USAGE

Unacceptable Usage

You cannot use a parameter to represent a column name or to rename a column:

Column-name usage differs from table-name usage in that you cannot use a parameter to
represent a column name. Unlike a table name, a column name must always be specified as an
identifier and not as a string expression. Therefore, the following statement is unacceptable:

SELECT $COLUMN_ONE, $COLUMN_TWO, $COLUMN_THREE

Additionally, although you follow the AS keyword in a SELECT clause with a string to rename
the result column, you cannot replace this string with a parameter. The following syntax is not
allowed because the parameter represents a string rather than a string value:

SELECT info_sys AS $MEANINGFUL_NAME

The next topic describes how to create parameters in the Criteria tab.

Select desired value from dropdowns
186 Reporting Guide

Editing the SQL Report
Problematic Usage

If you parameterize a varchar value that contains timestamp data, you must understand the way
the data formats the timestamp. For example, assume you parameterize the WINTS column of
the microsoft_windows_securityEvent_snare view. To provide your users with useful values in
the parameter-value field, you must know how the date displays. For example, it could display as
2008/05/15 or as 2008-05-15.

Sensage recommends that you first run the report without the parameter to determine the correct
format. Then create parameter values that match the style of the actual date text.

NOTE: This same issue also applies to parameters in Wizard reports.

Creating Parameter Fields That Display to the User

Figure 5-7 illustrates the Criteria tab in which you specify date criteria and define report
parameters. Specifying date criteria has been described in “Specifying a Time Range”, on page
180.

Figure 5-7: Criteria Tab for a SQL Report

The graphic above shows the window in which the two WHERE-clause parameters were defined.
It also illustrates the dropdown that displays the three field styles available for parameter values.

Creating a parameter requires you to specify values in the Column Criteria fields illustrated above:

The text in the left field instructs you to enter the name of the parameter.

The parameter's name can be a combination of alphanumeric characters and underscores.
Spaces are not allowed.

TIP: When you refer to the parameter within the SQL statement, you must precede its name
with a dollar sign ($). However, you should not include the dollar sign when you identify the

Parameter-
definition
fields
Reporting Guide 187

Chapter 5: Creating and Editing SQL Reports
parameter in its column-criteria field. For more information, see “Adding Parameters to the SQL
Query”, on page 185.

The text in the middle field instructs you to enter a run-time display label.

Make the label as meaningful as possible so that run-time users will understand the choices
they are making. Figure 5-7 illustrates display labels for two fields:

What event source?

What event type?

The field on the right provides three field styles, from which you select one to display column
values. The style you select determines your users’ options at runtime:

Text Box —Allows run-time users to enter a value

You enter a single value to display as the default value. The user can overwrite this value at
run time.

Dropdown List —Provides a fixed list of values to run-time users

You enter multiple values and select one to display as the default value.

ComboBox —Provides an editable list of values to run-time users

You enter multiple values and select one to display as the default value.

NOTE: This field is like the text box in that the interface allows you to keep the field empty,
but doing so causes the same problems described above.

NOTE: The column-values field does not accept a wildcard character at runtime. In other words, a
user cannot enter a percent sign (%) to represent and retrieve characters that are not displayed.
However, you can include the percent sign in your SQL query to provide this flexibility to your
users. For example, assume your event source includes Windows Retriever Non-DC and
Windows Snare Non-DC. You can enter the full names of these event sources in a dropdown or
you can simply specify Retriever, Snare, and Windows. If you provide the shortened names, you
must include the LIKE operator in your query. For an example of such a query, see “Adding
Parameters to the SQL Query”, on page 185.

You can specify parameters that represent values in any number of columns in the report. To add
more parameters, click the icon. To delete a parameter, click the icon.

NOTE: There are syntactic limitations as to which values can be represented by a parameter. For
more information, see “Adding Parameters to the SQL Query”, on page 185.

To create a parameter field

1 Enter a parameter name in the left field.

The name you enter will not appear to the user but will be included in the SQL query.

Sensage recommends that you enter the name entirely in uppercase letters so that it is clearly
identified as a parameter name. Also make the name meaningful so that its usage will be clear
in the SQL query.

2 Enter a meaningful label in the middle field.
188 Reporting Guide

Editing the SQL Report
The name you enter does appear to the user and makes meaningful the value selection.

3 Click the field-style icon (illustrated in Figure 5-7) to display the three style types, and
select the desired style.

4 To create a Dropdown List or ComboBox or Text Box with a default value, enter valid text in the
field and press ENTER.

For a Text Box, your specification for the field is complete.

For a Dropdown List or ComboBox, the field empties. To view the text, click the dropdown icon, as
shown below.

NOTE: You cannot delete a value that you enter accidentally in a Dropdown or ComboBox.
You must delete the entire parameter and recreate it. To delete a parameter, click the
icon.

5 To add values to a Dropdown List or ComboBox, enter additional text value(s) into the field,
pressing ENTER after each one.

NOTE: Although the interface allows you to keep the Text Box and ComboBox fields empty,
doing so does not return all values. Instead, it raises two issues:

The SQL engine interprets the empty field as an empty string and returns only rows that contain
an empty string in the corresponding column. Therefore, the user should always enter or select
a value at run time.

The schedule interface allows you to add the report to a schedule only if all parameters have a
default value. Because you schedule reports that run independently of user interaction, it is
good practice to provide the default value for reports you will schedule.

To create additional parameter fields

1 To add parameters, click the icon once for each parameter.

2 Repeat the procedure described above for each parameter.

You have created the fields that display to the user. This step is only half of the process. You must
also reference each parameter in the SQL query. The order of these two steps is irrelevant. In
other words, you can create the query first and then create the fields.

Running and Testing the Parameterized SQL Report

Figure 5-6 illustrates a Run window for a SQL report that provides parameterized criteria for the
two columns referenced in the example query. At run time, users can specify event source and
event type separately from the two dropdowns. Alternately, users can run the report on the default
values or enter their own values.

The SQL query engine substitutes the values selected by the user for the two parameters
specified in the example WHERE clause.
Reporting Guide 189

Chapter 5: Creating and Editing SQL Reports
The report created earlier, displayed in Figure 5-5, returned hundreds of rows that count every
type for every event source. The report output displayed in Figure 5-8 returned only five rows,
which count only one event type (Unknown user or bad password) for only one event source
(Windows Snare Non-DC). This report limited output by offering the user parameterized choices
for these two fields. The user’s response is evaluated in two different WHERE clause statements.

Figure 5-8: Limited Report Output: WHERE Clauses

Adding a Parameter to the HAVING Clause

The next example query adds a third parameter, which dynamically determines the content of the
query HAVING clause. The HAVING clause uses the value of the Count column to limit the
groups returned.

SELECT
_timef("%Y-%b-%d",ts) as "Date",

 log_type AS "Event Source",
 info_sys AS "Information System",
 result AS "Result",
 event_id AS "Event ID",
 event_description AS "Event Description",
 count (*) AS "Count"
FROM

userLogin__windows__nonDomainController
WHERE
 log_type LIKE ('%' + $EVENT_SOURCE + '%')
 and
 event_description = $EVENT_DESCRIP
GROUP BY
 1,2,3,4,5,6
HAVING

count(*) > _int32($HAVING_FILTER)
DURING ALL

IMPORTANT: There are a few restrictions on where and how you can specify a
parameter:

EDW treats every parameterized value as a string literal.

In other words, as it interprets each value, the EDW automatically encloses it within quotation
marks. Because of this interpretation, you can parameterize only string values or you must use
a Sensage SQL conversion function to convert the value to an integer.
190 Reporting Guide

Editing the SQL Report

R

NOTE: Because you can represent a table name as a string expression in a FROM clause, you
can use a parameter to specify a table name. For more information see, “Table Specifications
in FROM Clauses”, on page 273.

A further restriction is that each parameterized value must represent an actual value. For
example, the parameter can represent a data value stored in the EDW or a value interpreted by
the WHERE clause. It cannot, however, represent a string such as the one that renames a
column in the SELECT clause.

The example HAVING clause above evaluates the value returned by the count() function and
compares it to a numeric value entered by the user at run time. Because the EDW treats the
parameterized value as a string literal, the example clause converts the parameterized value to an
32-bit integer.

Figure 5-9 illustrates specification of a third parameter, a Text Field, that allows the user to specify
the minimum value displayed in the Count column. The Text Field provides a a single value that
users can overwrite at run time.

Figure 5-9: Specifying Parameters for a HAVING Clause

As illustrated in Figure 5-10, the example user’s input limits the report output to a single row. This
report limited output by offering the user a parameterized choice for the Count column. The
user’s response is evaluated in a HAVING clause that examines the count values for each group
and eliminates rows that fall below the value specified at runtime by the user.

Figure 5-10: Limited Report Output: HAVING Clause

Adding a Parameter to the FROM Clause

The last query example adds a fourth parameter, this one to the FROM clause. At run time, the
user can dynamically determine the report data source by selecting a value from this parameter.

To provide a choice of data sources requires that each data source to be structured similarly with
identical column names and data types. As documented in “Namespaces: Using a Single Report
or Dashboard to Access Different Data”, on page 43, HawkEye AP provides namespaces, which
allow administrators to create identically named tables with identical structures that store different
data depending on their location. One advantage this feature offers is the ability to create a single
report that retrieves different data from a single table whose data depends on the namespace that
contains the table.
eporting Guide 191

Chapter 5: Creating and Editing SQL Reports
A parameterized FROM clause provides similar flexibility within a namespace. For a
parameterized FROM clause, however, you do not name the tables identically. Instead, you
structure them similarly. Every column that the report retrieves must be named identically and
have the same data type in all tables that you offer to the run-time user.

The views included with HawkEye AP Analytics provide a good example of this data-source
flexibility. Analytics views normalize the data by enforcing consistent use of column names, data
types, and formats, and by consistently presenting disparate event data that indicates the same
information.

For example, Analytics provides event-type views for login events from Windows systems that use
domain controllers and event-type views for login events from all Windows systems. These views
contain columns that represent data specific to a grouping as well as columns whose data is
common to the event type, such as a user account column. For more information, see the
Analytics Guide.

The example query below adds a parameter to the FROM clause, which allows run-time users to
select the desired data source.

SELECT
_timef("%Y-%b-%d",ts) as "Date",

 log_type AS "Event Source",
 info_sys AS "Information System",
 result AS "Result",
 event_id AS "Event ID",
 event_description AS "Event Description",
 count (*) AS "Count"
FROM
 $TABLE_NAME
WHERE
 log_type LIKE ('%' + $EVENT_SOURCE + '%')
 and
 event_description = $EVENT_DESCRIP
GROUP BY
 1,2,3,4,5,6
HAVING

count(*) > _int32($HAVING_FILTER)
DURING ALL

NOTE: Because you can specify the data source in the FROM clause as an identifier, literal, or
expression that evaluates to the name of a table in the EDW, you can also include the FROM
clause parameter in a string expression. For example, the following is legal use of a parameter:

FROM "MyNamespace" + "." + $TABLE_NAME

For more information, see “Table Specifications in FROM Clauses”, on page 273.

The reports displayed in Figure 5-11 and Figure 5-12 illustrate one report run against two different
data sources: userLogin__windows__nonDomainController view and
userLogin__windows__DomainController view. The red ovals in the graphics highlight
significant differences in the data.
192 Reporting Guide

Editing the SQL Report
For example, Figure 5-11 highlights the event source as Non-DC. It also highlights the text of the
event description and the cache that produced the results shown. This report displays the results
in the second cache.

Figure 5-11: Results for userLogin__windows__nonDomainController View

Figure 5-12 highlights the event source as DC. It also highlights the text of a different event
description and the cache that produced the results shown. This report displays the results in the
first cache.

Figure 5-12: Results for userLogin__windows__DomainController View

NOTE:

The event-type and event-description data returned by the two views differs. Therefore, if a
report contains a parameterized FROM clause in addition to other parameters, you must
ensure that all parameters contain values relevant to all data-source choices.

When you create the parameter field for the FROM-clause value, provide a default value. If the
user runs the report without specifying a value, the report will not run successfully.
Reporting Guide 193

Chapter 5: Creating and Editing SQL Reports
Defining Parameters for an Associated Report

As documented in “Associating Reports to a Report or Security Alert”, on page 161, you can
associate a report to another report and to a security alert. At run time, the user selects value(s) to
examine from one of the columns in a report or security alert and then selects a pre-defined
associated report to display one value at a time.

Figure 5-13 illustrates a user selecting three values from the Event Description column and right-
clicking to display the popup. From the popup, the user chooses to run one of three associated
reports. After the user selects the associated report, its Run dialog displays

Figure 5-13: Selecting Multiple Column Values for an Associated Report

The data that the user selects from the source report or alert populates the column criteria row of
the associated report’s Run dialog. If the user has selected more than one value to examine, she
must select one of them from the appropriate dropdown and click Run to run the associated
report on that value. The associated report returns only rows that pertain to the selected value for
the selected column.

NOTE:

Because the user selects data to examine from one of the columns in the source report and the
selected data populates the parameter of the associated report, every report you design as an
associated report should include a parameter to contain the user’s selected value(s).

A parameterized Wizard report allows users to modify the parameters in the Run dialog of the
associated report. Users can delete unwanted parameters or select a different column value for
the parameter. For more information, see “Running a Report”, on page 100, “Opening an
Associated Report”, on page 54, and “Associating a Report to Another Report”, on page 161.

A parameterized SQL report does not allow users to modify the parameters in the Run dialog of
the associated report. You should consider this limitation when you create a parameterized
report as an associated report. You might consider the following options:

You can OR your parameters together so that the query engine interprets only the parameter that
contains a value in the Run dialog. The query example in “Adding Parameters to the SQL Query”,
on page 185, illustrates two WHERE-clause parameters. The query example below has modified
194 Reporting Guide

Editing the SQL Report
that query to use the OR operator rather than the AND operator. This modification allows the run-
time user to limit report results by only one column value rather than by two.

SELECT
_timef("%Y-%b-%d",ts) as "Date",

 log_type AS "Event Source",
 info_sys AS "Information System",
 result AS "Result",
 event_id AS "Event ID",
 event_description AS "Event Description",
 count (*) AS "Count"

FROM
userLogin__windows__nonDomainController

WHERE
 log_type LIKE ('%' + $EVENT_SOURCE + '%')
 OR
 event_description = $EVENT_DESCRIP

GROUP BY
 1,2,3,4,5,6
DURING ALL

You use the Report Wizard to create flexible associated reports.

Relevant Documentation

Processing directives that declare constant values that can be used within a SELECT
statement—“Macros”, on page 302.

String literals—“String Literals”, on page 291

HawkEye AP operators—“Operators”, on page 293

HawkEye AP conversion functions that convert a string value to an integer—“Conversion
Expressions”, on page 299.

Adding a Library to Your Query

HawkEye AP enables developers to create libraries, which allow common SQL fragments and
Perl code to be shared across queries. For example, a library can provide you with easy-to-
remember column names. Or, if your reports tend to involve the same subset of columns, a library
can provide the specified subset of columns.
Reporting Guide 195

Chapter 5: Creating and Editing SQL Reports
Figure 5-2 illustrates the window in which you enter the SQL query. Hidden at the bottom of this
window is the Library field. To display this field, click the expand icon, as illustrated in Figure 5-14.

Figure 5-14: Displaying the Libraries Field

After you expand the Libraries field, you can drag the desired library or libraries to it, as illustrated
in Figure 5-15.

Figure 5-15 illustrates the process to add a library to a SQL report.

Figure 5-15: Adding a Library to a SQL Report

NOTE: Before you can add the library, someone must create it in Administration mode. For more
information, see “Creating a Library”, next.

Click to display Library field.

Drag library to Libraries field
196 Reporting Guide

Editing the SQL Report
Creating a Library

In many cases you will have common SQL fragments that should be identical across many
queries. These fragments may include logic to categorize records according to business rules,
special business-specific functions such as custom string parsers and decoders, and lists of
excluded strings or loads.

To minimize maintenance and ensure consistency, HawkEye AP provides the ability to define
SQL syntax common to many queries once and maintain the SQL block centrally as a library. For
example, to provide your report developers with easy-to-remember column names, you can
create a library that provides each column with an alias by using the "WITH column_name AS
target_name" clause. You can also define Perl functions centrally and apply them to queries.

If your reports tend to involve the same subset of columns, consider making a library that
contains the specified subset of columns. Such a library enables a report developer to create a
query and reference multiple columns at once. This feature is especially useful when the query
writer is not familiar with the column names. Additionally, it allows for central control of the target
column names and allows an administrator to add columns into existing reports as the schema
evolves without having to edit multiple queries.

A user assigned to the administrator role creates libraries in Administration mode. Figure 5-16
illustrates the All Libraries window in Administration Mode. Currently, three libraries has been
created.

Figure 5-16: All Libraries Window
Reporting Guide 197

Chapter 5: Creating and Editing SQL Reports
To create a library, right click in the workspace or use the workspace action menu to select New
Library. Figure 5-17 illustrates the window that displays. As illustrated below, use this window to
name and describe the new library.

Figure 5-17: Naming, Describing, and Linking A Library

If you want to link an existing library to your new library, you can drag it to the Linked Libraries
field, as illustrated above.

Drag library to Libraries field
198 Reporting Guide

Viewing and Changing a SQL Report That Has Been Run
To provide the body of the library, click the SQL tab. Figure 5-18 illustrates the window in which
you enter the library text.

Figure 5-18: Enter the Body of the Library

After you click Save to save your work, the new library is available to users who create a SQL
report.

VIEWING AND CHANGING A SQL REPORT THAT HAS BEEN RUN

After a report has been run, the Options Pane provides the same operations as it does in the
dashboard for a report widget. For more information, see the following sections in Chapter 2:
Using Dashboards:

“Showing and Hiding Report Columns and Metadata”, on page 48

“Viewing and Changing the Time Range and Namespace”, on page 51

“Calculating Report Data”, on page 53

“Changing Between Table and Chart Formats”, on page 49

“Viewing the SQL Query and Other Properties”, on page 50

NOTE: Because many dashboard users are not interested in viewing and manipulating the SQL
query, the section below provides more detail than the earlier section on viewing the query.
Reporting Guide 199

Chapter 5: Creating and Editing SQL Reports
Viewing and Manipulating the SQL Query

Figure 5-19 illustrates the SQL tab for two different reports. The tab for the SQL report displays in
Reports mode. The tab for the Wizard report displays in a dashboard widget.

Figure 5-19: SQL Tab

The query displays differently depending on whether the report is a SQL report or a Wizard report:

If the report is a SQL report, the SQL tab displays the SQL statement that a user entered to
create the definition.

If the report definition provides parameters that enable the run-time user to specify value(s), the
top of the query displayed in the SQL tab shows the user-specified value for each parameter.
The value displays as an OVERRIDE because the user has overridden the default value for the
parameter. For more information, see “Overriding Multiple Macro Declarations”, on page 305.

SQL Report Wizard Report
200 Reporting Guide

Viewing and Changing a SQL Report That Has Been Run
There is an alternate way to view the parameter value(s) specified by the user at run time. You
can display a disabled version of the actual Run dialog in which the user specified parameter
values; to do so, click View Search Criteria.

If the report is a Wizard report, the SQL tab displays a generated query.

NOTE: A user defines the report interactively. The SQL query is generated from the user’s
definition. You can use this query as the basis of a SQL report. To do so, copy the text from the
Options Pane, paste it into the SQL tab of a SQL report, and modify it as desired.

If the report definition provides parameters that enable the run-time user to specify value(s), the
query displayed in the SQL tab shows the user-specified value for each parameter. Locating
the specified value does not require reading the SQL query, however. To display a disabled
version of the actual Run dialog in which the user specified parameter values, click View
Search Criteria.

Figure 5-20 illustrates the window that displays when a user clicks View Search Criteria from the
Wizard report illustrated above.

Figure 5-20: Viewing Search Criteria

The graphic above displays a disabled version of the Run Report dialog for the example Wizard
report. An active version of this dialog displayed to the user at run time. In the run-time dialog,
each of the two column-criteria parameters presented a dropdown from which the user selected
desired values. The dialog above illustrates the choices the user made at run time; it does not
provide the opportunity to make new choices.

From this dialog you can learn the following information about the current cache entry of the
example Wizard report:
Reporting Guide 201

Chapter 5: Creating and Editing SQL Reports
Date period and time zone over which it was run

Column values that the user specified

Namespace
202 Reporting Guide

CHAPTER 6

Creating and Managing Dashboards

This chapter contains the following sections:

• “Overview”, next

• “Creating a Dashboard”, on page 204

• “Managing Dashboards”, on page 216

• “Deploying Dashboards to Your Users”, on page 228

OVERVIEW

This chapter uses tutorial format to document dashboard creation. The tutorial describes how to
create two pages of the example PCI dashboard documented in Chapter 2: Using Dashboards. It
also describes how to schedule the dashboard, assign permissions to it, distribute it, and
manage it.

Figure 6-1 illustrates one page of the example PCI dashboard: Privileged Command Summary.

Figure 6-1: Example Page with Report and Text Widgets

This page above displays:

two versions of the same report widget—one in chart and one in table format

Text widget with PCI
requirement textDashboard name

Report widgets
Reporting Guide 203

Chapter 6: Creating and Managing Dashboards
a text widget that contains the PCI requirement that provides context for the reports

Additionally this tutorial describes how to create the PCI Welcome page, illustrated in Figure 6-13.
The Welcome page displays an image widget and two text widgets.

The first part of the tutorial describes how to create a dashboard that contains the Privileged
Command Summary and Welcome pages. The rest of the tutorial describes dashboard
management and deployment.

CREATING A DASHBOARD

This section describes the following topics:

• “Step 1: Creating the Dashboard”, next

• “Step 2: Adding a Report Widget to a Dashboard Page”, on page 205

• “Step 3: Switching Between Chart and Table Display”, on page 207

• “Step 3: Adding a Second Widget”, on page 209

• “Step 5: Working With a Text Widget”, on page 211

• “Creating a Page”, on page 213

• “Adding and Formatting Image Widgets”, on page 214

• “Locking the Dashboard”, on page 215

Step 1: Creating the Dashboard

This topic describes the first steps required to create the example dashboard and the page
shown in Figure 6-1. The following topics walk you through the steps that populate this page with
widgets and format those widgets.

To create the example dashboard

1 Select New Dashboard either from an Action Menu or right-click menu.

A highlighted name field displays.

2 Enter “PCI” in the highlighted name field and press ENTER.
204 Reporting Guide

Creating a Dashboard
Figure 6-2 illustrates the first step of dashboard creation. This window opened after the user
selected the New Dashboard menu. The newly created dashboard provides a field ready for
the dashboard name and an empty page named Page 1.

Figure 6-2: Creating a Dashboard

3 Double click the page name tab, change the name of the page to Privileged Command
Summary and press ENTER.

Figure 6-3 illustrates the new dashboard, named PCI. It also shows that the first page has been
renamed page to Privileged Command Summary.

4 Drag widgets from the Chooser to the page and customize display.

The next sections describe how to work with these widgets.

Step 2: Adding a Report Widget to a Dashboard Page

You populate a page by dragging widgets to it from the Chooser. If your Chooser displays more
widgets than you can view at one time, use the Search field to limit display by name. For more
information on searching for a widget, see “Chooser”, on page 33.
Reporting Guide 205

Chapter 6: Creating and Managing Dashboards
Figure 6-3 illustrates the first widget being dragged to the page from the Chooser. It also
illustrates the new dashboard name and page name.

Figure 6-3: Dragging a Widget to the Dashboard

Dashboard name appears in workspace header

Renamed page

Drag report widget to workspace

Chooser
206 Reporting Guide

Creating a Dashboard
The first widget fills the page, as illustrated in Figure 6-4.

Figure 6-4: First Widget on a Page

As illustrated above, the report widget displays its data in chart format. A report that has been
configured as a chart displays as a chart when you drag its widget to a dashboard. Because the
example page displays this report in two widgets, one as a chart and the other as a table, the next
step changes the display of this first widget.

Step 3: Switching Between Chart and Table Display

If it is important for your users to view a report in table format or you want to display the same
report in both chart and table formats, use the Show tab of the Options Pane to change the
display of the report widget to table.

Figure 6-5 illustrates how you would change the display of the Privileged Command Summary
widget just dragged to the example page. This figure also illustrates how you can show or hide
Reporting Guide 207

Chapter 6: Creating and Managing Dashboards
metadata and report columns. Metadata information includes the report name, a text description
of the report, its namespace, and the date criteria that determines its time period.

Figure 6-5: Changing Report Display

Figure 6-6 illustrates the results of the operations illustrated in Figure 6-5. The report now displays
as a table and its name displays above it.

Figure 6-6: Displaying the First Report as a Table

Change display
format

Show or hide
metadata

Show or hide
columns

Show tab

Select to display
208 Reporting Guide

Creating a Dashboard
The next step is to drag the same report widget to the page. This widget will display in chart
format.

Step 3: Adding a Second Widget

The next step in creating the example dashboard is to drag a second widget onto the page. In this
example, you drag the same report widget. You can position the widget as you drag it. You can
also rearrange and resize widgets after you have populated the page.

As illustrated in Figure 6-8, as you drag the second widget onto the page, the workspace displays
the widget’s outline and name. Before you release the mouse to drop the widget, you can move
the outline around the page to position it relative to the existing widget. Figure 6-7 illustrates
positioning the second widget to the left of the first.

Figure 6-7: Positioning a Second Widget to the Left of the First

Outline of the
second widget.

The name of the
second widget
displays above
the cursor.
Reporting Guide 209

Chapter 6: Creating and Managing Dashboards
Figure 6-8 illustrates positioning the second widget above the first.

Figure 6-8: Positioning a Second Widget Above the First

After you release the mouse, the second widget remains where you positioned it and the first
widget is resized to accommodate the second widget. Figure 6-9 illustrates two versions of the
workspace page. These versions display the outcome of the positions illustrated in Figure 6-7 and
Figure 6-8.

Figure 6-9: Releasing the Widget to its Location

Outline of the
second widget.

The name of the
second widget
displays above
the cursor.
210 Reporting Guide

Creating a Dashboard
After you have released the widgets onto the page, you can drag them to different locations. You
can also resize them.

To resize a widget

1 Position the cursor over the border of the widgets whose size you want to change.

The mouse pointer changes to the sizing pointer.

2 Click and drag the cursor up and down or right and left as appropriate to change the size of the
widget.

Step 5: Working With a Text Widget

The next tasks are to add the text widget, input its text, and format the text. Figure 6-10 illustrates
adding this third widget.

Figure 6-10: Adding the Text Widget to the Page

Drag the text widget to the
desired location on the page.
Reporting Guide 211

Chapter 6: Creating and Managing Dashboards
To add text, click inside the text widget and either type directly into the widget or copy text from
an external document and paste it into the widget. The example text widget contains the relevant
PCI requirement, as illustrated in Figure 6-11.

Figure 6-11: Formatting Text in a Text Widget

You can copy and paste text from an HTML 3.2, MS Word, RTF, or PDF file into a text widget. The
text widget preserves all end-of-line tags in text that you paste from these files.

NOTE: After you lock a dashboard:

Any URL copied from HTML 3.2 into a text widget becomes an active hyperlink.

HTML formatting elements in a text widget disappear.

Sensage recommends that you save and refresh to verify the changes.

After you enter the text, you can format it. To do so, select the widget and open the Options Pane.
Alternately, if the Options Pane is already open, select the desired widget. Figure 6-11 illustrates
the Options Pane for the selected text widget.

From the Text Format dialog, you can change the type, style, and size of the font that displays the
text. You can also change text foreground and background colors. As illustrated in Figure 6-12,
you can change heading text separately from body text. Select the desired text first; then modify
its format.

In the example below, the heading and body text has been revised as follows:

Heading text has been enlarged and has had its color changed.
212 Reporting Guide

Creating a Dashboard
Body text has a had its font type and color changed.

Figure 6-12: Example of Formatted Text Widget

Before you deliver this page to your users, you will want to lock the page. However, first create the
welcome page. For more information, see “Locking the Dashboard”, on page 215.

Creating a Page

Typically, a dashboard comprises multiple pages. The next step in dashboard creation is to add a
page to the dashboard.

To create a page, either select New > Page from the Workspace Action Menu or right click in the
page-tab area and select New Page from the popup. While the name is highlighted, enter a
meaningful name and press ENTER. Alternately, you can rename it later by double clicking the
page tab.

After you create and name a page, you can reorder pages by dragging the page tab to the
desired location among other page tabs.
Reporting Guide 213

Chapter 6: Creating and Managing Dashboards
The next topics describe how to create a page like the Welcome page in the example PCI
dashboard. Figure 6-13 illustrates the example page.

Figure 6-13: Example Welcome Page with Image and Text Widgets

For more information about manipulating a page, see “Changing Focus to a Page”, on page 32
and “Changing the Relative Position of a Page”, on page 32.

Adding and Formatting Image Widgets

After you create the Welcome page, drag two text widgets to it and populate them with text.
Because text wizards were discussed in “Step 5: Working With a Text Widget”, on page 211, this
section moves directly to working with Image widgets.

Figure 6-14 illustrates the Welcome page with the two text widgets and the new image widget.
The user has entered text directly into one text widget and copied and pasted text into the second
widget from a text file. The text widgets have been resized and their text formatted. The user has
also dragged an image widget onto the page to the desired location.
214 Reporting Guide

Creating a Dashboard
As soon as you drop the image widget onto the page, the Open dialog displays. This dialog
enables you to browse to the directory that contains the desired image file. As shown in Figure 6-
14, the user has imported their company logo.

Figure 6-14: Adding and Formatting Image Widget

The screen above illustrates the Options Pane operations for an image widget. These operations
allow you to change the graphic by browsing to a different directory and image file. The pane
displays the full path of the currently displayed image.

The formatting options for an image widget also enable you to change its aspect ratio and the
vertical and horizontal position of the image within the widget.

At this point you have completed creation of two pages in the example PCI dashboard. You can
now move the Welcome page to the left of the Privileged Command Summary page. To do so,
grab one of the page tabs and drag it to the desired position.

The final step in dashboard creation is to lock the dashboard and save it. Figure 6-13 illustrates
the locked version of the dashboard shown in Figure 6-14.

Locking the Dashboard

Typically you lock a dashboard before you deploy it to your users. When you lock the dashboard:

The title bar and outline of each displayed widget on all pages disappears and your user
cannot reposition the widgets. The appearance of each page is cleaner and crisper.

All pages in the dashboard are locked.

To lock a dashboard, select Lock from the Workspace Action Menu. To unlock, select Lock
again.
Reporting Guide 215

Chapter 6: Creating and Managing Dashboards
Removing a Widget from a Page

You can delete a widget from a page either by selecting Delete > Widget... from the Workspace
Action Menu or Delete Widget... from the popup that displays when you right-click anywhere
inside the widget except its header. You will be prompted to confirm the deletion. Click Yes in the
confirmation dialog.

MANAGING DASHBOARDS

This section contains the following topics:

• “Setting Dashboard Options”, next

• “Scheduling and Modifying Reports from the Dashboard”, on page 222

• “Managing Dashboards in Folders”, on page 225

• “Viewing and Assigning Dashboard and Folder Permissions”, on page 226

• “Running Dashboards”, on page 227

• “Deleting Dashboards”, on page 228

• “Deploying Dashboards to Your Users”, on page 228

Setting Dashboard Options

In Dashboards mode, the Options Pane provides one pane for the dashboard as a whole and
another for the widgets on the current page. When the Options Pane is open, the dashboard
pane is always available. As you change focus among the widgets on the current page, the title
and options of the widget pane change to reflect the selected widget. Figure 6-15 illustrates how
the title changes when the user selects two different widgets on the same page.

Figure 6-15: Dynamically Changing Option Pane Display

Dashboard options are displayed under three separate tabs. The following sections describe
these tabs:

• “Specifying Date Options”, next

• “Setting Permissions”, on page 218

• “Viewing Properties”, on page 220
216 Reporting Guide

Managing Dashboards
Specifying Date Options

Figure 6-16 illustrates the Date Options tab for the PCI dashboard. This tab enables you to select
which report results the dashboard displays. You use this tab to change the displayed cache of all
reports on the dashboard.

Figure 6-16: Date Options Tab: Selecting a Schedule and Its Run History

The Date Options tab provides two options:

Show cache per scheduled run

This option causes only scheduled cache entries to display. Every scheduled run of the
dashboard adds a cache entry to the display. By default, the latest entry displays.

If more than one schedule runs the dashboard, the Schedule field provides a dropdown of all
schedules by name. Select the desired schedule to display its cache entries. If the desired
cache entry does not display by default, select it and press Apply. Figure 6-16 illustrates this
process.

Show most recent cache per report

This option disables all other options on this pane, including the Apply button. Select this
option to display unscheduled cache entries. For example, you might select this option for the
following reasons:

The most recent report cache entries indicate suspicious data.

A user has run a report manually from Reports mode and you want to display the latest cache entry.

You have created an unscheduled dashboard that you have no need to schedule so you want to run it
manually.

Select schedule run history.

Select desired schedule.

Click Apply.3

2

1

Reporting Guide 217

Chapter 6: Creating and Managing Dashboards
To view existing report cache entries that are more recent than the scheduled ones, select this
option and click Refresh. To create new cache entries for every report on the dashboard, run
the dashboard by selecting Run > Dashboard... from the Workspace Action Menu. After the
run completes, click Refresh to display the latest cache entry for each report.

For more information, see “Refreshing Dashboards and Running Items”, on page 85.

Setting Permissions

Users are associated with roles. A user’s membership in one or more role determines the types of
actions they can perform on specific items, such as whether they can view a dashboard or modify
a report or see a folder.

Administrators give users permission to items by granting their roles permissions to those items.
The roles to which a user is assigned as well as the permissions granted to the roles determines
whether a user can change a dashboard or only view and run it or only view it or have no access
to it.

NOTE:

Users gain the cumulative set of permissions from all roles to which they are assigned. In other
words, if you are assigned to the Human Resources role, which has no permission to access
an item, and to the Investigations role, which has permission to run and view a dashboard, you
have permission to run and view the dashboard.

For more information, see “Viewing and Assigning Report, Dashboard, and Folder
Permissions”, on page 122 and Authentication in Chapter 8, “Administering Users and
Authentication” in the Administration Guide.

Users who have Edit permission on an item can assign other users access to it.

Figure 6-17 illustrates the Permissions tab for the PCI dashboard. Use this tab to assign
dashboard permissions to specific roles and also to view the assigned permissions. For example:

If you assign the All permission, you grant the role the full set of permissions. In other words,
you enable all users assigned to the role the ability to view, edit, and run the dashboard.

If you assign the View permission, you limit users assigned to the role to only viewing the
dashboard. Such users cannot run or modify the dashboard. They do not even see the items in
the Chooser.

If you assign the View, Run permission, you allow users assigned to the role to both view and
run the dashboard but not edit it. These users also do not see the items in the Chooser.
218 Reporting Guide

Managing Dashboards
There are two ways to assign permissions: to individual roles and to a set of roles. Figure 6-17
illustrates both of these.

Figure 6-17: Permissions Tab: Two Ways to Set Permissions for Each Role

The Permissions tab lists all roles defined for your EDW instance. You assign permissions to
specific roles in one of following ways:

To assign permissions to a single role — the Permission dropdown

1 Click the permission field next to the role name.

A dropdown of permissions displays.

2 Select the desired permission from the dropdown.

To assign permissions to multiple roles — the Action Menu

1 Select contiguous or non-contiguous roles and click the Action Menu.

NOTE: Alternately, you can click the Action Menu > Select all to grab all roles simultaneously
and then use SHIFT-CLICK or CTRL-CLICK to deselect specific roles.

2 Select Mark as and then select the desired permission.

Assign Permissions to Multiple Roles
1. Select the desired roles.
2. Click the Action Menu and select the desired

Assign Permissions to a Single Role
1. Click the corresponding Permissions

field to display the dropdown.
2. Select the desired permission.
Reporting Guide 219

Chapter 6: Creating and Managing Dashboards
Viewing Properties

Figure 6-18 illustrates the Properties tab for the PCI dashboard. This tab displays who created
the dashboard and when, and who last modified the dashboard and when.

Figure 6-18: Properties Tab

Modifying and Scheduling Report Widgets

This section covers the following topics:

• “Viewing and Changing the Time Range and Namespace”, next

• “Scheduling and Modifying Reports from the Dashboard”, on page 222

• “Automatically Merging Cache Entries”, on page 224

• “Setting Other Widget Options”, on page 225

Viewing and Changing the Time Range and Namespace

Every time a dashboard runs, a new cache entry is generated for every report the dashboard
displays. When you open a dashboard, the cache entries it displays depends on dashboard
configuration. Typically, a dashboard displays the latest cache entry for each report, created
when the dashboard ran last.

If a report displays in more than one dashboard, and the different dashboards run at different
intervals, the report will have a cache entry for every interval specified for all dashboards that
contain it. Additionally, if you or others run the report manually, the report will have a cache entry
for each of these manual runs. Each of these manually run cache entries identifies the user who
created it and the date created. However, a scheduled dashboard can display unscheduled
220 Reporting Guide

Managing Dashboards
cache entries only if you select Show most recent cache per report for the dashboard. For more
information, see “Specifying Date Options”, on page 217.

Assume one dashboard runs daily and another weekly, and that they both contain the same
report. Daily and weekly cache entries will be available for that report. When you open the daily
dashboard, the latest daily cache entry displays. When you open the weekly dashboard, the
latest weekly cache entry displays. To switch between these cache entries, or to display an earlier
cache for either interval or to merge several cache entries into a single result set, open the Date
Options tab for the report widget.

As illustrated in Figure 6-19, if a report has been run over more than one date interval, the Date
Period dropdown displays all cached intervals. If only one interval is available, this field displays
the date period as a text label rather than in a dropdown.

NOTE: If a report has been run in more than one namespace, the Namespace dropdown
contains all of those namespaces. Use this dropdown to switch namespaces.

The field below the Namespace and Date Period dropdowns organizes cache entries by date
and time for the current date period. The most recent entries display at the top.

Figure 6-19: Date Options Tab

If a report has multiple cache entries, you can select contiguous entries to display as a single
result set. Select one or more cache entries and click Apply to display the selected entries. To
select multiple entries, select the first entry; then SHIFT-CLICK as you select the last entry.

NOTE:

Click Edit... to:
- add a namespace to the current list
- specify a new date period

Optionally, select a different
namespace from the dropdown.

Select the desired date
period from the dropdown.

Select the desired cache entry
or entries from the list.

Click Apply.3

2

1

Reporting Guide 221

Chapter 6: Creating and Managing Dashboards
Merged results persist only for the current viewing. If you want HawkEye AP Console to
automatically merge cache entries that persist, set the auto-merge feature. For more
information, see “Automatically Merging Cache Entries”, on page 224.

The Date Periods dropdown displays all cache entries available at the time you opened the
Options Pane. To display any cache entry created since you opened the dropdown, you must
refresh the dashboard. For more information, see “Refreshing Dashboards and Running
Items”, on page 85.

When you change or combine cache entries, only your view of the data changes. Other users
viewing the same dashboard do not see these changes.

If a report has run in more than one namespace, you can display cache entries for another
namespace. Select the desired namespace from the Namespace dropdown.

If you want to run a report in a namespace that does not display from the dropdown, or none of
the cached periods meet your needs, you can specify a different namespace and a new date
period from this tab by clicking Edit.... For more information, see “Scheduling and Modifying
Reports from the Dashboard”, next.

Scheduling and Modifying Reports from the Dashboard

“Step 3: Switching Between Chart and Table Display”, on page 207 describes one reason you
might drag the same report widget twice to a dashboard — to display the same report in both
chart and table formats. There is another reason you might display the same report widget
multiple times in the same dashboard — to run it against different namespaces or over different
date periods.

For example, assume you have a login report that is structured to return Windows logins when
run in the Windows namespace and Unix logins when run in the Unix namespace. You want to
display results from both systems on the same dashboard page. Assume further that the report
defaults to running against the Windows namespace. You can use the Date Options tab for the
report widget to change its namespace and/or its date period. You can also use this tab to
automatically merge multiple contiguous report cache entries.

After you click Edit.... from the Date Options tab, the Schedule Criteria dialog displays. From
this dialog, you can specify new settings for the current report, which the dashboard schedule will
use at the next scheduled run. Regardless of whether the dashboard has been scheduled, you
can manually run the report with the new settings directly from the dashboard.

After you make and save all desired changes, you can run the widget by selecting it in the
dashboard and selecting Run > Widget ... from the Workspace Action menu. Click Refresh to
display the latest cache entries.

The report illustrated in Figure 6-20 is a daily report that has been run only in the analytics
namespace. In this example, that namespace is not available from the Namespace dropdown on
222 Reporting Guide

Managing Dashboards
the Date Options tab. To run this report in another namespace to which you have access, click
Edit... to display the dialog illustrated in Figure 6-20.

Figure 6-20: Specifying a Different Namespace and Date Criteria

As illustrated above, the Namespace field on the Schedule Criteria dialog displays all
namespaces that you have permission to access. If the current report has been run in only one or
two of the available namespaces and you want to run it in a different one, you can select the
namespace from this dropdown. The namespace you select must contain the table or view that
provides the report data. In the example of the login report that runs in both the Windows and
Unix namespaces and is designed to return data from both namespaces, you could select the
Unix namespace from this dropdown.

After you select the namespace and run the report, the new namespace displays in the
Namespace field on the Date Options tab.

From this dialog, you can also specify a date period and timezone to create a cache entry that is
not yet available from the Date Options tab. Additionally, you can use the Auto-Merge pane to
combine report caches. For more information on this option, see “Automatically Merging Cache
Entries”, next.

After you make all desired changes, click OK. The next scheduled run of the dashboard will
display the changes you made to the widget. In other words, if you have changed both the
namespace and date criteria, the widget will display results for that namespace and date period.
Additionally, the Date Option tab will include the new namespace and date period in its
dropdowns.

Select the desired namespace
from the dropdown.

Optionally, select a date period
and time zone from the dropdowns.

Click OK.
Reporting Guide 223

Chapter 6: Creating and Managing Dashboards
Automatically Merging Cache Entries

As documented in “Viewing and Changing the Time Range and Namespace”, on page 220, you
can create a virtual report that merges multiple existing cache entries. For example, assume a
report collects data on an hourly basis. You can use the Date Period dropdown from the Date
Options tab to manually merge 24 hourly reports into a virtual daily report. Such a report enables
you to compare the hour values against each other to view how the data changes over the course
of the day.

If you use the Date Period dropdown from the Date Options tab to merge the cache entries, the
resulting report displays as soon as you click Apply and disappears when you close the
dashboard. Such a merged report is also available only to you; other dashboard users cannot
see it.

HawkEye AP Console provides another way to merge cache entries, a way that automatically
creates the result set every time the schedule runs and saves it even after you close HawkEye AP
Console. Such a merged report is available to all dashboard users with permission to view it.

To specify that multiple cache entries be automatically merged and the results saved, use the
Schedule Criteria dialog illustrated in Figure 6-21.

Figure 6-21: Automatically Merging Report Cache Entries

The example above assumes the report is run hourly. The user has enabled automatic merging
by selecting Combine most recent cache data. As the field name indicates, Auto-Merge
operates only on the most recent cache entries. The number you specify in Total reports
combined determines how many cache entries are combined.

For example, if a report has been run daily for seven days over many months, and you specify the
value 7 in Total reports combined, Auto-Merge combine only the most recent seven cache
entries.

To activate auto-merge, select
Combine most recent cache data.

Click OK.

Enter the appropriate number; for
example, 24 to generate a daily
report from 24 hourly cache entries.
224 Reporting Guide

Managing Dashboards
After you click OK, the settings you specify will be used by the dashboard schedule at its next
scheduled run. To force the run, manually run the dashboard. For more information, see
“Running Dashboards”, on page 227.

Setting Other Widget Options

Widget options depend on widget type. For information on the widget options, see:

“Step 5: Working With a Text Widget”, on page 211

“Adding and Formatting Image Widgets”, on page 214

“Showing and Hiding Report Columns and Metadata”, on page 48

“Filtering and Sorting Report Data”, on page 46

“Viewing and Changing the Time Range and Namespace”, on page 51

“Calculating Report Data”, on page 53

“Changing Between Table and Chart Formats”, on page 49

“Viewing the SQL Query and Other Properties”, on page 50

Managing Dashboards in Folders

Dashboards mode provides folders, which enable you to group dashboards by usage,
department, schedule, or other need. Like report folders, which are described in “Managing
Report Shortcuts in Folders”, on page 110, dashboard folders allow you or an administrator to
apply schedules and permissions to a set of dashboards as a group. For example, you can
assign schedules to all dashboards in a folder.

NOTE: Setting permissions on a folder does not effect the permissions of the dashboards within
the folder or the reports that the dashboards display. Permissions set on a folder are, however,
copied to any new dashboards created in (or dragged into) the folder. For more information, see:

“Viewing and Assigning Dashboard and Folder Permissions”, next

Managing Access to HawkEye AP Console Reports, Dashboards, and Folders in Chapter 8,
“Administering Users and Authentication” of the Administration Guide.

You create a dashboard folder in the same way you create a report folder, by selecting New
Folder from the Navigator Action Menu or from the popup menu that displays when you right
click within the Navigator. Change the default name to a meaningful one and, if desired, move it
into a folder.

When you move a dashboard into a folder, you drag the dashboard directly from the Navigator to
the folder. This effect of this action is different from moving report definitions into a folder. When
you move a report definition into a folder, HawkEye AP Console creates a shortcut of the
definition in the folder. Shortcuts of the same definition can display in multiple folders. However,
unlike report definitions, a dashboard can display in only one folder at a time. Therefore, if you
delete the dashboard from the folder, you permanently remove it from your system.
Reporting Guide 225

Chapter 6: Creating and Managing Dashboards
Figure 6-22 illustrates the process to move a dashboard.

Figure 6-22: Moving a Dashboard into a Folder

Like report folders, you can create a hierarchy of dashboard folders to organize your dashboards.
To create hierarchical folders, create and name the desired folders and then drag one folder
below another. There is a maximum of ten levels of folders.

Viewing and Assigning Dashboard and Folder Permissions

Users are associated with roles. Their membership in roles determines the types of action users
can perform on specific items, such as whether they can view a dashboard or modify a report or
open a folder.

Administrators give users permission to reports, dashboards, and folders by granting roles
permissions to those items. A user who has Edit permission on a folder, can also give other users
permissions on the report. Dashboards and folders do not have owners.

The roles to which a user is assigned as well as the permissions granted to the roles determines
whether a user can edit a dashboard or only run and view it or only view it or have no access to it.
Users who have no permission to view a dashboard or folder will not see the dashboard or folder
listed in the Navigator. They will also not see a dashboard in a folder, even if they have full
permissions on the folder but none to the dashboard.

NOTE: Users gain the cumulative set of permissions from all roles to which they are assigned. In
other words, if you are assigned to the Human Resources role, which has no permission to
access an item, and to the Investigations role, which has permission to run and view a report, you
have permission to run and view the report. For more information, see:

Managing Access to HawkEye AP Console Reports, Dashboards, and Folders in Chapter 8,
“Administering Users and Authentication” in the Administration Guide

Managing Access to HawkEye AP Console Reports, Dashboards, and Folders in Chapter 8,
“Administering Users and Authentication” in the Administration Guide.

Figure 6-23 illustrates the Permissions tab for the PCI dashboard. This tab, which functions
identically for folder permissions, enables you to set dashboard permissions to specific roles and
to view the assigned permissions. A user with administration permission creates and modifies the
permissions themselves in Administration mode.

Create a folder or use
an existing folder.

Grab the dashboard and
drag to the folder.

The dashboard displays
in the folder.

21
226 Reporting Guide

Managing Dashboards
As illustrated below, you can specify permissions separately for each role from the dropdown
next to each role. Alternately, you can select all roles and then apply the same permission to all
roles.

Figure 6-23: Dashboard Permissions Tab

The Permissions tab lists all roles defined for your EDW instance.

Running Dashboards

Typically, schedules run the dashboard. However, there are times that you want to run it
manually. “Specifying Date Options”, on page 217 provides a few reasons you would run a
dashboard manually.

To run a dashboard

1 Select the dashboard in the Navigator.

2 Select Run > Dashboard... from the Workspace Action Menu.

The Multiple Reports dialog displays, as shown below.

Use the dropdown to set
permissions for individual users.

Use the Action Menu
to select the Mark as
menu and set the
same permissions to

2

1
Use the Action Menu to
Select all users. The
highlighted users here
indicate that all users have

Setting Permissions Individually

Setting Permissions Collectively
Reporting Guide 227

Chapter 6: Creating and Managing Dashboards
3 Click Continue to run all reports on the dashboard.

4 When the run completes, click Refresh to display the latest cache entry for each report.

NOTE: You can also run a page or individual widget from the Run menu accessed from the
Workspace Action Menu.

Deleting Dashboards

You delete dashboards from the Navigator or folder in which they exist. You can only delete one
dashboard at a time. To do so, right-click the dashboard and select the Delete... menu option. A
dialog displays that prompts you to verify the deletion. Click Yes to delete.

Deploying Dashboards to Your Users

After you create a dashboard and assign it permissions, it becomes available to all users that
access HawkEye AP Console in the same HawkEye AP installation and who have permission to
access the dashboard. Users who do not currently have HawkEye AP Console open will see the
dashboard the next time they open the console. Users who do have HawkEye AP Console open,
must click Refresh to see the dashboard in their console.
228 Reporting Guide

CHAPTER 7

Creating and Editing Schedules

This chapter contains the following sections:

• “Overview”, next

• “Creating Schedules”, on page 232

• “Editing and Deleting Schedules”, on page 244

OVERVIEW

This chapter describes how to create and manage a schedule, which is a specification that
determines when reports and dashboards are run and where and how the results are delivered. In
addition to scheduling reports and dashboards, you can also schedule folders of reports and
folders of dashboards.

You create and manage schedules from the Schedules option in Administration mode. Figure 7-
1 illustrates the left side of the window that displays when you access the Schedules module.

Figure 7-1: Displaying the All Schedules Window

As illustrated above, the All Schedules list displays when you select the Schedules option from
Administration mode.
Reporting Guide 229

Chapter 7: Creating and Editing Schedules

2

The All Schedules list provides the name and status of each schedule and the number of items
assigned to it. For each enabled schedule, the All Schedules list also provides the next date and
time that the schedule will run as well as the amount of time it took to run each of its items at the
last run.

Figure 7-1 illustrates all items assigned to the Daily Firewall schedule. As indicated in the Current
Status column, five reports have finished running, one has started running, and twelve are
queued to run. Figure 7-3 illustrates the Last Successful Run: Duration (End Time) column,
which indicates the total run time of each report on its last run and the time of the last run. As
indicated by the column header, the end time is enclosed within parentheses.

In the illustrated example, three “finished” reports took 15 seconds to run, and two took no
seconds. You can use the information in this column to determine when and how to run the
schedule. For example, if the scheduled items take longer to run than the schedule period allows,
you could expand the schedule period or split the items into different schedules that run at times
that do not conflict.

By default, the information for each schedule is collapsed. To display information about each
scheduled item Administration Guide for each schedule, click the closed icon to expand the
row.

The Current Status column displays the status of the schedule as a whole as well as the status of
each item in an expanded schedule:

A running schedule displays no status but its Next Start Date column displays the date and
time it will next run. When you expand the schedule, the status of each of its items displays.

A disabled schedule displays <Disabled>. Its Next Start Date column displays <Not
Applicable>.

If a running schedule encounters a problem in any of its items, the status of the schedule
changes to <Disabled> and the status of the failed item changes to <Error>. The <Error>
status is a link. Click this link to display a dialog box with the error message. After the item runs
successfully, the Error link disappears. Other items for the same schedule might display a
status of Finished or Queued or, if currently running, indicate the time the run began.

NOTE: Many events can cause a schedule to fail. For example, a schedule can be defined that
emails PDF files of two different reports to a user who has permission to access only one of the
reports. Such a schedule fails before it attempts to send the email. Alternately, an administrator
might restart the Real-Time system, which also causes schedule failure. An administrator can
disable a schedule when she becomes aware of a potential problem and investigate the
problem before she enables the schedule again. For information on investigating schedule
failures, see “Configuring Logging for HawkEye AP Console”, on page 184 in the
Administration Guide.

IMPORTANT: If the HawkEye AP Application Manager component is not running when a
schedule runs, the scheduled item runs when the Application Manger is restarted. If this
is not desired behavior, disable the schedules before stopping the Application Manager.
30 Reporting Guide

Overview
NOTE: A user who does not have permission to access the Schedule module but does have
permission to access alerts, can locate the error in the System Alerts widget on the dashboard.
Figure 7-2 illustrates a schedule error opened in the System Alerts widget.

Figure 7-2: Viewing a Schedule Error in the System Alerts Widget on a Dashboard

For more information on monitoring system alerts, see Chapter 10: Administering Assets and
Monitoring Alerts in the Administration Guide.

The All Schedules list also provides metadata that indicates each schedule’s end date, creation
date, and last modification date, as well as the user that created and last modified the schedule.
Figure 7-3 illustrates the metadata columns that are hidden in Figure 7-1.

Figure 7-3: Viewing the Right Side of the All Schedules Window: Displaying Schedule Metadata

Most schedules are defined to run continuously. Their Final Schedule column displays Never
ends. There are times, however, that you run the scheduled items only a limited number of times.
For example, assume your analysis of recent reports indicates a potential problem that may have
begun in the past. You can create a schedule that runs all relevant reports over the suspicious
time period. In this case, you might schedule all items to run once and to delete the schedule
after the run. Such a schedule displays the last time the schedule ran in the Final Schedule
column. For more information, see “Specifying Lifetime”, on page 235.
Reporting Guide 231

Chapter 7: Creating and Editing Schedules
CREATING SCHEDULES

The following topics describe how to create a schedule:

• “Naming and Describing a Schedule”, next

• “Schedule Tab: Setting Frequency and Lifetime”, on page 233

• “Reports & Dashboards Tab: Selecting and Deleting Items to Schedule”, on page 238

• “Output Tab: Specifying Destination”, on page 241

• “Enabling and Disabling A Schedule”, on page 244

Naming and Describing a Schedule

To create or manage a schedule, select Schedules from the Navigator in Administration mode.
You create a schedule by selecting New Schedule from the Workspace Action Menu or right
clicking in the workspace. Figure 7-4 illustrates the schedule-creation window that displays.

Figure 7-4: Specifying a Schedule’s Name, Description, Frequency, and Lifetime

As illustrated above, the schedule-creation window provides fields at the top that remain
displayed throughout the creation process:

Name—Sensage recommends that you enter a name that uniquely identifies the schedule by
frequency and items scheduled, for example, Monthly Firewall and Hourly Windows
Logins.

Description—You can enter a short description that clarifies the schedule’s purpose.

Fields
always
display

Tabs
232 Reporting Guide

Creating Schedules
Status—By default, a new schedule is enabled as soon as you save it. If you do not save final
changes, however, the status changes to Disabled. You can use this field to manually change
the value of a running schedule to disable it.

In addition to the three fields that you can modify, the top of the window displays metadata that
provides the name of the users that created and last modified the schedule and the creation and
modification dates. These values also display in the All Schedules list, as illustrated in Figure 7-3.

Below these fields are three tabs that enable you to specify different schedule features. These
tabs, which are illustrated in Figure 7-4, are:

Schedule—enables you to set the frequency and lifetime. For more information, see “Schedule
Tab: Setting Frequency and Lifetime”, next.

Reports & Dashboards—enables you to associate items for scheduling. For more information,
see “Reports & Dashboards Tab: Selecting and Deleting Items to Schedule”, on page 238.

Output—enables you to specify the destination of the scheduled items, such as emailed output
or dashboard alert. For more information, see “Output Tab: Specifying Destination”, on page
241.

Schedule Tab: Setting Frequency and Lifetime

As illustrated in Figure 7-4, the Schedule tab provides the following fields:

Frequency—Use this field to specify how often the schedule runs.

Lifetime—Use this field to specify when scheduling begins and when, if ever, it ends. For more
information, see “Specifying Lifetime”, on page 235.

Specifying Frequency

This field provide two options that offer very different granularity. You can schedule:

By Calendar—This options enables you to set the frequency to every day of the week, selected days
of the week, or selected days of the month. You can also specify whether the schedule runs every
month or only selected months.

Run Every—This option enables you to set the frequency to a specified number of hours or minutes.
Reporting Guide 233

Chapter 7: Creating and Editing Schedules
BY CALENDAR

Figure 7-4 illustrates the default calendar setting: every day of the week every month. Figure 7-5
illustrates a different calendar option: selected days of the week for selected months.

Figure 7-5: Specifying Days of the Week

As illustrated above, you can select specific days to run the schedule. You can also specify
whether the schedule runs on those days every month or only selected months.

Figure 7-6 illustrates how you can specify selected days of the month. This option provides a
selection field for every possible day of the month, including the relative value “Last day”. The
Last day value allows you run a report at the very end of every month regardless of the number
of days the months contains.

Like the option to specify days of the week, you can set the schedule to run on the specified days
every month or only specified months.

Figure 7-6: Specifying Days of the Month
234 Reporting Guide

Creating Schedules
RUN EVERY

Figure 7-7 illustrates how to set the schedule to run by hours or minutes rather than by days,
weeks, months, or years.

Figure 7-7: Specifying Days of the Week

As illustrated above, you can set the schedule to run at a specified time interval. Enter the desired
number in the empty entry field.

NOTE:

When you schedule a report to run every few hours or a specified number of minutes, the
report definition should also be set to run over such a short duration.

In Dashboards mode, you can specify that a specific number of the most recent report cache
entries be automatically merged into a single result set. In other words, you can schedule a
virtual report that merges multiple existing cache entries. The merged results persist only for
the current viewing. For example, assume a report collects data on an hourly basis. You can
specify that the most recent 24 hourly report cache entries be automatically merged every day
into a virtual daily report. For more information, see “Automatically Merging Cache Entries”, on
page 224.

Specifying Lifetime

SPECIFYING START DATE AND TIME

By default, each schedule begins running when the current day ends; that is, at midnight today.
You can change the date and time by editing the First scheduled run field. Alternately, you can
change the date by selecting the desired date from the preview calendar. As illustrated in Figure
7-8, click the dropdown icon to display the calendar. Also illustrated in this figure is the preview
calendar, which encloses the current date in a box and changes the color of the default start date.

Figure 7-8: Specifying Start Date and Time

Setting Start Date Setting Start Time
Reporting Guide 235

Chapter 7: Creating and Editing Schedules
Typically, you will change the default start time. For example, if the Collector finishes collecting
and loading data at 4:00 am, you will want your schedule to start running after that time. In fact,
you will want to allow a safety period to ensure that all data is loaded before you begin reporting
on it. In this case, you might set the start time for 5:00 am.

The label for the First scheduled run field includes a note in parentheses that backdating is
allowed. Backdating sets the schedule to begin earlier than the current day. Backdating occurs
when you select a date or time earlier than the current date and time. When you select this option,
a dialog advises that setting the start date earlier than the current date causes the scheduled
reports to reflect past data and that creating backdated reports can take a long time. If you select
this option, set the report to run at a time that will least interfere with other scheduled runs. You
set the time in the field below First scheduled run.

After you select the start date, you can change the default time and time zone. These fields are
illustrated in Figure 7-8. After you set the start date and time, the selected values display in the
Next scheduled run field.

The time zone dropdown allows you to set a time zone that is different from your local one. For
example, assume a New York user has defined a report whose date criteria specifies data
collection from Monday through Friday in the Tokyo time zone. This user wants to schedule the
report to run on Saturday in the Tokyo time zone to ensure that all data is collected before the
report runs. When this user creates the schedule, he sets the time zone to Tokyo time and sets
the report to run on Saturdays.

After the schedule runs and the user views the list of all schedules, he sees that all dates and
times reflect his local New York time zone. Displaying the dates and times within a single time
zone provides a consistent view of scheduled runs. This consistency enables the user to
understand which schedules are currently running and which will run next. This information is
critical to understanding whether the schedules are properly load balanced.

SPECIFYING END DATE

By default, each schedule begins running at midnight and has no termination date. If you create a
schedule to investigate suspicious events, you might run the schedule only once or multiple times
within a short period of time. In this case, you would specify the end date and set the schedule to
delete after its last run. You might also want to run a report only once if the report is huge and you
don't want to impact EDW performance during work hours. In this case, you would schedule this
report to run once at night and would also set the schedule to delete after its last run.
236 Reporting Guide

Creating Schedules
Figure 7-9 illustrates the process for scheduling a report that is not ongoing.

Figure 7-9: Specifying End Date

Use dropdown to change Final run
value to Based on Calendar.

3

2 Use Calendar popup to
select the desired End Date.

Select Delete
schedule after
last run.

1

Reporting Guide 237

Chapter 7: Creating and Editing Schedules
Reports & Dashboards Tab: Selecting and Deleting Items to Schedule

Figure 7-10 illustrates the tab in which you assign items to a schedule by dragging the item(s)
from the Chooser to the Reports & Dashboards pane.

Figure 7-10: Assigning Items to the Schedule

As illustrated in Figure 7-11, you can drag many types of items to a schedule.

Figure 7-11: Example of Item Types in Schedule Assignment

Wizard Report

Folder of Reports

Folder of Dashboards

SQL Report

Dashboard

Search field Search by item name
Click to sort
238 Reporting Guide

Creating Schedules
If the Chooser lists more items than can display at once, you can limit the displayed items by
entering meaningful text in the search field or expand the size of the Chooser. After you limit the
items, drag desired items to the workspace, as illustrated in Figure 7-12.

Figure 7-12: Limiting Displayed Items and Assigning Items

The operation above illustrates how to assign a dashboard to the schedule. As the user drags the
dashboard, its name displays in the status bar, below the Chooser. If the item is in a folder, the full
path to the item displays. For example, because the Account Access dashboard is in the IT folder,
the status bar displays IT > Account Access.

After you select desired items for scheduling, you can change each item’s default namespace
and date criteria. For example, assume you have created a single login report that runs in both
the Unix and Windows namespaces. Its report definition defaults the report to run in the Windows
namespace. You can create a single schedule that runs the report in both namespaces. To do so,
drag the report item twice from the Chooser to the Items to Schedule pane. Keep the default
namespace for one of the items and change the namespace of the other. If desired, you can also
change the date criteria for one of these reports.

Drag widget to workspace

Use the Search field to limit item display

Status Bar displays item name and path
Reporting Guide 239

Chapter 7: Creating and Editing Schedules
First select the report whose settings you want to change. Then select Edit default settings ...
from the Action menu. Figure 7-13 illustrates these steps.

Figure 7-13: Changing An Item’s Namespace or Date Criteria

In the Item Criteria dialog for the selected item, make your desired changes. Figure 7-14
illustrates this dialog.

Figure 7-14: Dialog for Changing Criteria

To change the criteria for all items at the same time, select Select All Items from the Action menu
before you select Edit default settings As illustrated in Figure 7-13, you can also use the
Action menu to delete a selected item and to revert to default settings.

The last step in schedule creation is specifying who or what receives the scheduled items and the
format of the items.
240 Reporting Guide

Creating Schedules
Output Tab: Specifying Destination

Figure 7-15 illustrates the tab in which you specify the format and destination of the scheduled
items.

Figure 7-15: Specifying Destination

As illustrated in Figure 7-15, the Output tab provides the following fields:

Exception Report Alerts—Select this field to trigger a row to display in the Exception Alerts
widget on a dashboard.

One row displays in the Exception Alerts widget every time the scheduled report contains one
or more rows. For example, you might schedule a report that lists after-hours logins. In this
case, the scheduled report triggers a row in the Exception Alerts widget when a user logs into
your system over the weekend or after close of business. The alert row in the widget lists the
name of the report and the number of rows returned. You can open the report to view the
results by right clicking the alert row in the Exception Alerts widget.

NOTE: Because this feature applies to all reports in the schedule, schedule only reports that
return values when a problem occurs.

For more information, see “Viewing Exception Alerts”, on page 84 and Monitoring Exception
Alerts in Chapter 10, “Administering Assets and Monitoring Alerts” of the Administration Guide.
Reporting Guide 241

Chapter 7: Creating and Editing Schedules
Export—Use this field to specify the destination and format of the exported report (PDF, HTML,
XML, or CSV).

You can select all or a subset of formats. After you select a format, select its file-system
destination from the associated dropdown, as illustrated below.

NOTE: Directories display in the dropdown only after an administrator has configured them as
destination directories. For more information, see Specifying EDW Hosts in Chapter 2,
“Configuring HawkEye AP” in the Installation, Configuration, and Upgrade Guide.

Email output—Use this field to email the scheduled items to specified users; you can email in
one of the following formats: PDF, HTML, XML, CSV, link. For more information, see “Emailing
Scheduled Items”, next.

Sometimes scheduled reports produce zero rows. You can configure HawkEye AP to suppress
the sending of reports with zero rows. For more information, see Suppressing the Sending of
Reports with Zero Rows in Chapter 2, “Configuring HawkEye AP” of the Installation,
Configuration, and Upgrade Guide.

NOTE: HTML, XML, and CSV export format are available only for reports and report folders.
These options are disabled when the schedule contains only dashboards or dashboard folders.
242 Reporting Guide

Creating Schedules
Emailing Scheduled Items

Figure 7-16 illustrates the process for emailing scheduled items.

Figure 7-16: Emailing Scheduled Items

NOTE:

If you specify Link as the email type, the email contains a link for each scheduled item.

When you click each emailed link, HawkEye AP Console opens to the appropriate mode and
displays the linked item. You will be prompted to log into HawkEye AP Console to enable it to
open.

The Chooser displays every user created for the current EDW instance for whom an email
address has been specified.

An administrator can create users in one of two ways:

HawkEye AP Console Security option—accessed from Administration mode

Command line—using the atmanage utility.

NOTE: Although an administrator can create users in either of the above ways, only the
HawkEye AP Console Security module in Administration mode enables the administrator to
specify an email address for a user. The administrator can add the email address in
HawkEye AP Console after creating the user in the command line or HawkEye AP Console.
However, it may take an hour before the user created in the command line displays in the
console. For more information, see Chapter 8: Administering Users and Authentication in the
Administration Guide.

Although the email subject and body text are not required, entering this text is helpful to your
recipients.

2

1 Select output type: PDF,
HTML, XML, CSV, or Link.

4

Enter email subject text.

Drag email recipient(s)
to workspace

Enter email body text.

3

Reporting Guide 243

Chapter 7: Creating and Editing Schedules
Figure 7-17 illustrates example email that contains links to two different reports.

Figure 7-17: Example Email With Report Links

Enabling and Disabling A Schedule

After you specify frequency and lifetime, assign the items to run, and set the desired destinations,
you must save your changes and close the edit window to start the schedule. The schedule will
begin running at its first scheduled time.

To disable a running schedule, you can do either of the following:

Select it in the All Schedules list, right click, and select Disabled from the popup menu or the
Action Menu.

Open it for editing and select Disabled from the Status dropdown.

EDITING AND DELETING SCHEDULES

To edit a schedule, select it in the All Schedules list, right click, and select Edit from the popup
menu or the Action Menu.

If the schedule is enabled but not running, it is automatically disabled when you can open its
definition for editing. Although the Status field indicates that the schedule is Enabled, it is
disabled for the entire time you have it open to edit. After you save your changes, you must
close the schedule definition to enable it again.

If the schedule is currently running, a dialog displays that prompts whether you want to disable
the schedule. After you disable it, you must wait until the run completes before you can edit it.
After you save your changes, you must close the schedule definition to enable it again.

If a schedule has already run, the Edit window displays the first three fields in the Lifetime pane
as disabled. You can no longer change the day and time of the first scheduled run. Nor can you
change the schedule time zone. You can, however, still change the time zone of its scheduled
objects, as described in “Reports & Dashboards Tab: Selecting and Deleting Items to
Schedule”, on page 238.
244 Reporting Guide

Editing and Deleting Schedules
To delete a schedule, select it in the All Schedules list, right click, and select Delete... from the
popup menu or the Action Menu. You will be prompted to confirm the delete.
Reporting Guide 245

Chapter 7: Creating and Editing Schedules
246 Reporting Guide

CHAPTER 8

Creating Alerting Rules from Templates

The chapter contains the following sections:

• “Overview”, next

• “Introduction to Alerting Rule Templates”, on page 247

• “Understanding Alert Thresholds and Alert Windows”, on page 250

• “Creating and Modifying Alerting Rules from Templates”, on page 251

• “Creating a Rule from a Template”, on page 258

• “Activating, Deactivating, and Deleting Rules”, on page 261

For more information on the HawkEye AP Real-Time system, see “Processing Real-Time
Streaming Events”, on page 18 in the Event Collection Guide.

OVERVIEW

HawkEye AP uses parsing rules to analyze and transform streaming log data from multiple
systems in different formats into consistent data that it stores and makes available for analysis. Its
Real-Time system uses alerting rules to examine the transformed data and raise alerts when it
detects specified conditions in the event data. HawkEye AP Console displays the alerts in the
Security Alerts widget on a dashboard, as described in “Viewing Security Alerts”, on page 64.

HawkEye AP provides multiple parser and alerting rules, which display in the HawkEye AP
Console Rules module in Administration mode. The parsing and alerting rules are written in the
HawkEye Event Processing Language (HEPL). HEPL is shipped with the HawkEye AP product to
enable developers to write their own parsing and alerting rules. In addition to the parsing rules
and alerting rules delivered with the product, HawkEye AP provides alerting rule templates that
enable analysts to create their own alerting rules. Analysts can easily configure these to their
specific needs.

HawkEye AP Console displays the rules in its Rules module. This chapter describes how the
templates work and how to use HawkEye AP Console to create alerting rules from the templates.
It also describes how to activate, deactivate, and delete HawkEye AP rules.

For information on the HEPL, see the HawkEye Event Processing Language Developers Guide.

INTRODUCTION TO ALERTING RULE TEMPLATES

HawkEye AP provides templates that enable and simplify the process for creating alerting rules.
The template names identify the source of their data and their function. For example:

Unix login Substring Match — matches any substring within a Unix login message

Windows Security (Windows Retriever) EVENTID Match — matches any event ID across
all Windows hosts

Syslog Host and Substring Match— matches any substring on specified hosts for all Syslog
events
Reporting Guide 247

Chapter 8: Creating Alerting Rules from Templates
McAfee DLP Alert Threshold — triggers a specified number of alerts when it detects a
specified number of Data Loss Prevention (DLP) events from a single source host within a
specified time period

Cisco PIX Substring Match— matches any substring within Cisco PIX events

Each template provides criteria fields that enable analysts to customize the alert to their needs.
These fields typically include the following:

Event Threshold— A numeric field into which you specify the number of events before the rule
fires an alert.

Event Window— A numeric field into which you specify the time period the alert allocates to
track the number of events.

For example, if you set the Event Threshold to 5 and the Event Window to 300 seconds, the
rule triggers an alert when 5 events occur within 5 minutes.

NOTE: The alerting rules that HawkEye AP provides use a sliding time window. For example,
assume you have set the Event Threshold to 5 and the Event Window to 300 seconds. The
graphic below illustrates how the 5-minute window slides to ensure that the rule captures all
events within the specified event window. Within the first 5-minute period beginning at 1:00, too
few events occur to fire an alert. However, because the 5-minute period begins again at 1:01
and 1:02, enough events occur during the period beginning at 1:02 to fire the alert.

Alert Threshold— A numeric field into which you specify the maximum number of alerts
triggered before the rule suppresses triggering additional alerts.

IMPORTANT: Limiting the number of alerts fired protects your system from being flooded by redundant
alerts. For more information, see “Understanding Alert Thresholds and Alert Windows”, on page 250.

Alert Window— A numeric field into which you specify the time period the alert allocates to
track the number of alerts.

Alert Name— A text field into which you uniquely identify the alert in the Security Alerts
widget’s Name field.

Some alerts append the match string to the end of the alert name. For these alerts, it’s helpful
to include in the Alert Name the meaning of the string. For example, the McAfee DLP Alert
Threshold rule displays the source IP that triggered the alert. Therefore, you might name your
rule: “DLP Multiple Alerts -- SRC IP: “. The graphic below illustrates two rows in the
Security Alert widget for an alert with this name.

time period that fires the alert
248 Reporting Guide

Introduction to Alerting Rule Templates
Most alerts do not append the match string to the end of the alert name. For these alerts, it’s
helpful to include the string in the name. For example, the Unix sudo Substring Match rule
matches a substring within the Unix sudo message but does not display the string in the alert
name. Therefore, you might identify the match string in the rule’s name; for example: “Unix
sudo Substring Match -- password“. The graphic below illustrates two rows in the Security
Alert widget for an alert with this name.

NOTE: Each alerting rule template that HawkEye AP provides indicates whether the rule appends
the search text to the rule name. The graphic below provides an example from two rule templates,
one of which appends the search value and one of which does not.

In addition to the criteria fields that are common to most templates, several templates include one
or more of the following criteria fields.

Substring Match — A text field into which you specify text to be found in the message of the
event that triggers the alert.

For example, for a login alert, this text might be a user name or login status (such as success or
failure). For an alert that fires whenever a specified process begins, this text might be a comma-
separated list of processes.

The template labels describe the text that the alert expects.

Event ID— A text field into which you enter the ID of the event that will trigger the alert.

For example, for a Windows alert, this text might be “529” (failed login).

Host Match List — A text field into which you enter one or more host names that will trigger the
alert; you must use commas to separate multiple host names.

User Match List — A text field into which you enter one or more user names that will trigger the
alert; you must use commas to separate multiple user names.

Other templates may contain other criteria fields.

Rule template explains that the search
value is appended to the rule name
and provides an example name

Rule template does not mention the
search value and provides an
example name
Reporting Guide 249

Chapter 8: Creating Alerting Rules from Templates
UNDERSTANDING ALERT THRESHOLDS AND ALERT WINDOWS

The Alert Threshold and Alert Window criteria fields prevent your HawkEye AP system from
being flooded with alerts. When you create a rule from a template, you can configure how many
alerts should display over a specified time period. The HawkEye AP-provided alerting rules
already specify safe values for these two criteria.

Figure 8-1 illustrates a portion of the configuration pane that displays when you create or edit an
alert from a template.

Figure 8-1: Alert Threshold and Alert Window Explained

The example configuration panes illustrate the Event Threshold and Event Window as well as
for the Alert Threshold and Alert Window criteria fields. The text above the table of example
values explains how these fields work together. The example explains that the rule fires an alert if
5 events (Event Threshold) occur within 5 minutes (Event Window = 300 seconds) and that the
rule does not fire more than 10 alerts (Alert Threshold) each hour (Alert Window = 3600
seconds).

Sensage recommends that you consider your system carefully when you set these values. For
example, the HawkEye AP-provided alerting rules windowsAccountLockoutGlobal,
windowsAccountLockoutDomain, and windowsAccountLockoutUser set these values differently
because they each represent a significantly different scope:

windowsAccountLockoutGlobal — limits 10 account lockouts to occur within 1 minute

windowsAccountLockoutDomain — limits 10 account lockouts to occur within 2 minutes

windowsAccountLockoutUser — limits 3 account lockouts to occur within 5 minutes

NOTE: The Alert Threshold and Alert Window criteria fields limit the number of alerts that
display in the alerts widget by reducing the number of alerts actually fired.
250 Reporting Guide

Creating and Modifying Alerting Rules from Templates
CREATING AND MODIFYING ALERTING RULES FROM TEMPLATES

Use the HawkEye AP Console Rules module to:

view all available rules

activate, deactivate, and delete rules

create new alerting rules from rule templates

modify existing alerting rules

Figure 8-2 illustrates the rules that display at the top of the Rules module.

Figure 8-2: The Rules Module: Top of Displayed Rules (Alerting Rules)
Reporting Guide 251

Chapter 8: Creating Alerting Rules from Templates
Figure 8-3 illustrates the rules that display at the bottom of the Rules module.

Figure 8-3: The Rules Module: Bottom of Displayed Rules (Parsing Rules)

As illustrated in the two figures above, the All Rules window displays two folders of items:

Alerting Rules

Three types of alerting rules display in this folder:

User-defined rules that were created from alerting rule templates.

These rules were written in the HawkEye Event Processing Language (HEPL).

HawkEye AP-provided alerting rules that are delivered with the HawkEye AP product software.

These rules were written in HEPL.

Legacy rules.
252 Reporting Guide

Creating and Modifying Alerting Rules from Templates
These rules were written in an earlier HawkEye AP correlation-rule language.

Parsing Rules

Two types of parsing rules display in this folder:

Most of these rules were written in the HEPL language.

There are a few legacy parsing rules that were written in an earlier HawkEye AP parsing language.

For information on the HEPL language, see the HawkEye Event Processing Language Developers
Guide. For information on the earlier languages used to create the parsing and alerting rules, see
the Event Collection Guide.

Figure Figure 8-4 illustrates a set of activated alerting rules. Only two of the rules have not been
activated. Rules that have been activated display a green circle with a check mark. Rules that
have not been activated display a red circle with an X character.

When you select an alerting rule on the left, its properties display in the pane on the right, as
illustrated in Figure 8-4.

Figure 8-4: Properties for the Selected Rule
Reporting Guide 253

Chapter 8: Creating Alerting Rules from Templates
In Figure 8-4, the Unix sudo Substring Match Rule rule has been selected, as indicated by its
highlighted name in the Alerting Rules pane. This is a user-defined rule that was created from an
alerting rule template. Its properties display in the right pane.

At the top of the properties pane, the rule status indicates whether the rule has been activated or
deactivated. If an error occurred during activation, this field displays the error text.

Below the status field and within parentheses, the Rule Name field identifies the template on
which the rule is based. If the selected rule had been one of the HawkEye AP-provided alerting
rules, the template would display as none. If the selected rule had been one of the legacy alerting
rules, the pane to the right displays different information that does not include template
information.

In Figure 8-4, below the template name is an entry field that provides a default name for the rule.
This name displays in the Alerting Rules folder to the left. You can change this value to reflect the
way you configure the rule. For example, if you configure this rule to search for “root” as its
substring, you might rename the rule to “Unix sudo Substring: root”. If you configure this rule
to search for “passwd” as its substring, you might rename the rule to “Unix sudo Substring:
passwd”.

If you create more than one alerting rule from the same template, and each rule searches for a
different substring, the name you provide here differentiates each rule variant in the left pane.

Because the rule illustrated in Figure 8-4 is a user-defined one, the top of the properties pane also
displays Template Instructions. These instructions are followed by an example table that
explains each criteria field and illustrates how these example values effect rule processing.
254 Reporting Guide

Creating and Modifying Alerting Rules from Templates
Only three criteria fields are shown above in Figure 8-4. Figure 8-5 illustrates all the criteria.

Figure 8-5: Example of Alerting Rule Properties

The graphic above illustrates all the criteria fields available in one template that HawkEye AP
provides. For information about these properties, see “Introduction to Alerting Rule Templates”,
on page 247.
Reporting Guide 255

Chapter 8: Creating Alerting Rules from Templates
Below all the configuration fields, the properties pane displays a description of what the rule does.
The description field has two tabs. The Description tab displays by default. The View Source tab
displays the rule’s code, sections of which are illustrated in Figure 8-6.

Figure 8-6: Viewing the Rule’s Code

As shown above, when you select the Check to preview rule with parameter values replaced
checkbox, your criteria field values are highlighted in the rule’s code.

NOTE:

If you modify the value in a criteria field, you must save the change to see it reflected in the
View Source window.

The properties of a HawkEye AP-provided alerting rule and a legacy alerting rule display
differently. The properties pane for these rules also include the status, rule name, and
description, but there are significant differences.
256 Reporting Guide

Creating and Modifying Alerting Rules from Templates
Figure 8-8 illustrates the properties of a HawkEye AP-provided alerting rule.

Figure 8-7: Example of HawkEye AP-Provided Alerting Rule Properties

This rule is not configurable. The information pane is provided to explain the functioning of the
rule.
Reporting Guide 257

Chapter 8: Creating Alerting Rules from Templates
Figure 8-8 illustrates the properties of a legacy alerting rule that provides configurable conditions.

Figure 8-8: Example of Legacy Alerting Rule Properties

The graphic above illustrates the properties of the Dictionary Password Attack, Parameterized
legacy alerting rule. If a specified number of login failures are followed by a successful login on
the same host, the rule triggers a security alert. By default, this rule tracks five failed logins prior to
a successful one. However, you can configure the rule to track a different number of failures.

Because this rule was not created from a template, it mentions no template. Moreover, its
Description field does not include a tab for viewing the code.

NOTE: Not all legacy rules are configurable. The information pane for a non-configurable legacy
rule does not include the Parameters field.

CREATING A RULE FROM A TEMPLATE

This section describes how to create an alerting rule from a template.

To create an alerting rule from a template

1 Select New Alerting Rule from Template... from the Action Menu, the right-click popup menu,
or CTRL+N.

The New Alerting Rule From Template dialog displays, as illustrated below.
258 Reporting Guide

Creating a Rule from a Template
2 Select the desired template from the list of available templates, and click OK.

NOTE: As you select a rule in the dialog, a description of the rule displays at the bottom.

The New Alerting Rule From Template dialog changes to display the conditions available for
the selected rule, as illustrated below.
Reporting Guide 259

Chapter 8: Creating Alerting Rules from Templates
3 Specify a meaningful name for the rule and set desired values for the criteria.

NOTE:

The rule name can be a maximum of 59 characters and must be unique to your HawkEye AP
deployment. After you specify the name, HawkEye AP appends .rule to the end of the name.

If the text you enter in a criteria field exceeds the size of the text field, click the Edit button () icon. This
icon is not available for the rule name field because the name cannot exceed the size of the entry field.
260 Reporting Guide

Activating, Deactivating, and Deleting Rules
4 When you are satisfied with your settings, you can click either Save or Save and Activate.
Both buttons save the rule. The Save and Activate button saves the step of activating
separately.

Your new rule displays in the Alerting Rules folder.

For more information, see “Activating, Deactivating, and Deleting Rules”, next.

ACTIVATING, DEACTIVATING, AND DELETING RULES

Activating Rules

If you do not activate an alerting rule when you save it, you can select Activate from the Action
Menu or the right-click menu.

Parsing rules and legacy alerting rules do not have an edit pane with a Save and Activate button.
Therefore, to activate these, select the rule and then select Activate it from the Action Menu or the
right-click menu.

Deactivating Rules

To deactivate an alerting rule or a parsing rule, select the rule and then select Deactivate from the
Action Menu or the right-click menu. You can reactivate the rule at any time by following the
instructions above.

Deleting Rules

To delete an alerting rule or a parsing rule, select the rule and then select Delete from the Action
Menu or the right-click menu.

NOTE: A deleted rule is not recoverable. You must reinstall and reactivate the rule to enable it
again.
Reporting Guide 261

Chapter 8: Creating Alerting Rules from Templates
262 Reporting Guide

CHAPTER 9

Report Libraries Reference

Report libraries provide functions for common look-up and conversion operations you may wish
to perform in your SQL reports. For more information on using libraries with SQL reports, see
“Adding a Library to Your Query”, on page 195.

The following libraries are included with your HawkEye AP distribution:

• “Geo IP Utility”, on page 263

• “IP Conversion Utility”, on page 264

• “Internal System Audit Library”, on page 265

• “Microsoft Windows Library”, on page 265

GEO IP UTILITY

The Geo IP Utility library contains functions to look up domain and country of origin from a URL.

domain()

Returns the domain name portion of the URL.

Synopsis

domain (<URL>)

Arguments

Example

SELECT
URL as "URL",
domain(URL) as "Domain"

FROM
myTable

DURING ALL

Return Value

The domain name portion of the URL. For example, the domain name of the URL "www.foo.com"
is "foo.com"

get_country_from_domain()

Returns the country where a domain is located.

Argument Description

<URL> Universal Resource Locator
(URL)
Reporting Guide 263

Chapter 9: Report Libraries Reference
Synopsis

get_country_from_domain(<domain_name>)

Arguments

Example

SELECT
URL as "URL",
domain(URL) as "Domain"
get_country_from_domain(domain(URL)) as "Country of Origin"

FROM
myTable

DURING ALL

Return Value

The Country where the domain is located, displayed as a two-character code using ISO 3166-1-
alpha-2 code elements. See English country names and code elements for a complete list.

IP CONVERSION UTILITY

The IP Conversion Utility library provides the hex_to_dotted_quad() function.

hex_to_dotted_quad(IP address in Hexadecimal format)

Converts an IP address stored in hexadecimal format to the standard dotted quad format.

Synopsis

hex_to_dotted_quad(<Hex_IP>)

Arguments

Return Value

IP address in dotted quad format. For example, the following IP address is displayed in dotted
quad format:

127.0.0.1.

Argument Description

<domain_name> Domain name

Argument Description

<Hex_IP> IP address in hexadecimal
format
264 Reporting Guide

http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm

Internal System Audit Library
Example

SELECT
hex_to_dotted_quad(SOURCEIPADDR) as "IP Address"

FROM
myTable

DURING ALL

INTERNAL SYSTEM AUDIT LIBRARY

The Internal System Audit library provides a function for use with creating reports on HawkEye AP
internal auditing tables.

service2Description()

Translates an internal service name to a textual description.

Synopsis

service2Description(<service_name>)

Arguments

Return Value

A textual description of the service name.

Example

service2Description(ReportService.createReportDefinition)

SELECT
SERVICE_NAME as "Service Name"
service2Description(SERVICE_NAME) as "Service Description"

FROM
myTable

DURING ALL

MICROSOFT WINDOWS LIBRARY

The Microsoft Windows library provides the following functions for use in processing Windows
event data:

• “loginType2desc()”, on page 266

• “eventId2desc()”, on page 266

Argument Description

<service_name> Internal HawkEye AP service
name
Reporting Guide 265

Chapter 9: Report Libraries Reference
• “rights2desc()”, on page 267

• “k5code2desc()”, on page 267

loginType2desc()

Translates numeric login types to a textual description.

Synopsis

loginType2desc (<login_type>)

Arguments

Return Value

A textual description of the Windows login type code.

Example

SELECT
LOGIN_TYPE as "Login Type Code",
loginType2desc(LOGIN_TYPE)as "Login Description"

FROM
myTable

DURING ALL

eventId2desc()

Translates numeric event ID codes into a textual description.

Synopsis

eventID2desc(<Event_ID_code>)

Arguments

Return Value

A textual description of the Windows event ID code.

Example

SELECT
EVENT_ID as "Event ID Code",
eventID2desc(EVENT_ID) as "Event Description"

FROM

Argument Description

<login_type> Windows login type code

Argument Description

<Event_ID_code> Windows event ID code
266 Reporting Guide

Microsoft Windows Library
myTable
DURING ALL

rights2desc()

Translates Windows user rights strings to a textual description.

Synopsis

rights2desc(<Windows_user_right>)

Arguments

Return Value

A textual description of the user right.

Example

SELECT
USER_RIGHT as "User Right",
rights2desc(USER_RIGHT) as "User Right Description"

FROM
myTable

DURING ALL

k5code2desc()

Translates a Kerberos hexadeicmal error code into a textual description.

Synopsis

k5code2desc(<hex_code>)

Arguments

Return Value

Textual description of the Kerberos error code.

Example

SELECT
KERBEROS_ERROR as "Kerberos Error Code",

Argument Description

<Windows_user_right> A string representing user rights. For
example: SeBackupPrivilege.

Argument Description

<hex_code> Kerberos error code in hexadecimal
format
Reporting Guide 267

Chapter 9: Report Libraries Reference
k5code2desc(KERBEROS_ERROR) as "Kerberos Error Description"
FROM

myTable
DURING ALL
268 Reporting Guide

CHAPTER 10

Sensage SQL

Sensage SQL is a special implementation of standard SQL that is optimized for event-log
analysis. This chapter describes the SELECT statement. Other statements found in standard SQL,
such as UPDATE or DELETE, are not supported in Sensage SQL to avoid the risk of evidence
tampering.

This chapter includes the following sections:

• “Overview of Sensage SQL SELECT Statements”, next

• “Target Clauses”, on page 271

• “FROM Clauses”, on page 273

• “DURING Clauses”, on page 275

• “WHERE Clauses”, on page 277

• “GROUP BY Clauses and Aggregation Queries”, on page 278

• “SLICE BY Clauses”, on page 282

• “HAVING Clauses”, on page 283

• “ORDER BY Clauses”, on page 284

• “UNION ALL Clauses”, on page 285

• “Data Types”, on page 286

• “Data Source Expressions”, on page 289

• “Data Processing Expressions”, on page 292

• “Processing Directives”, on page 301

• “Working with Lists”, on page 313

OVERVIEW OF SENSAGE SQL SELECT STATEMENTS

This section describes these topics:

• “Basic SELECT Syntax”, next

• “Keywords and Clauses Required in SELECT statements”, on page 270

• “About Tables and Namespaces”, on page 270

Basic SELECT Syntax

In Sensage SQL, a SELECT statement has the following, basic syntax:

SELECT [ALL|DISTINCT] [{FIRST|TOP|LAST|BOTTOM} n]
<expression>[AS <target>][, <expression>[AS <target>][...]]

FROM <table_specification>
[WHERE <conditional_expression>]

[GROUP BY [<expression>|<target>[, <expression>|<target>[...]]] [IN n PASSES]
[SLICE BY <conditional_expression>]
[HAVING <conditional_expression>]

[ORDER BY [<expression>|<target>[, <expression>|<target> [...]]]
[DURING {ALL|<start_time>, <end_time>[OR <start_time>, <end_time>[...]]}]

;

Reporting Guide 269

Chapter 10: Sensage SQL
Significant Terms

Capitalized words along the left margin are called keywords. They have special meaning and
introduce clauses within a SELECT statement.

Clauses can include expressions, modifier keywords, and identifiers.

An identifier is a reference to the name of such objects as a table, view, column, macro, or a
target in a SELECT clause; typically the name is restricted to an alphanumeric character and an
underscore.

Every table column is defined with a data type, which include varchar, int32, and boolean. The
term for a data type and its value is literal. Examples of literals are:

string literal—"This text is a string literal."

numeric literals—27 and 4.50 and -9

boolean literals—T, F, TRUE, FALSE, 1, 0

NOTE: Clauses must appear in the order shown above. SELECT statements end with semicolons
(;).

Keywords and Clauses Required in SELECT statements

The following are required in SELECT statements:

The SELECT keyword, which begins the statement

The target clause, which lists the columns in result sets returned by the statement.

The FROM keyword, followed by a specification of the table to query.

The DURING keyword, followed by the time frames to include in result sets returned by the
statement.

A terminating semi-colon (;).

The following example shows a SELECT statement with only the required parts:

SELECT *
FROM mytable
DURING ALL

;

About Tables and Namespaces

The EDW organizes tables into a hierarchy of namespaces. The namespace hierarchy is similar to
a hierarchical file system, with namespaces corresponding to directories or folders, and tables
corresponding to files or documents. Like directories in file systems, one namespace can contain
another. Two namespaces are separated by a period For example, ns1.ns2.ns3.mytable
references a different table than ns1.ns2.mytable.
270 Reporting Guide

Target Clauses
The default namespace is default. To specify a table in a namespace within the default, you
must explicitly specify the full namespace. The following example specifies a table whose
namespace is within the default namespace:

default.ns1.ns2.ns3.mytable

In contrast, the following example specifies a table in a namespace that descends directly from
the root of the hierarchy instead of from the default namespace.

ns1.ns2.ns3.mytable

Use namespaces to organize your tables in a meaningful way. For example you can organize by
company.division.department, or by user, or application, or other structure.

TARGET CLAUSES

SELECT statements begin with a target clause, which lists the columns returned in the result sets
of queries. Target clauses follow immediately after the SELECT keyword.

This section describes these topics:

• “Computed expressions in Target Clauses”, next

• “Named Targets”, on page 271

• “Invisible targets”, on page 272

• “DISTINCT Modifier Keyword”, on page 272

• “FIRST and LAST Modifiers”, on page 272

Computed expressions in Target Clauses

Target clauses include expressions that may or may not mention columns in the table specified in
the FROM clause. Target expressions can include math, string, comparison, and logic operators,
as well as functions.

For example, the following SELECT statement returns a result set with a single column that
contains values from the ts column formatted with the _timef() function.

SELECT _timef("%m/%d/%Y", ts)
FROM example_webserv_100
DURING ALL

;

Named Targets

The SQL query engine chooses default names for target columns in result sets, based on their
expressions. You can specify the names for target columns with the AS modifier keyword.

For example, the following SELECT statement returns a result set with one column that has
“Date” as its name.

SELECT _timef("%m/%d/%Y", ts) AS Date
FROM example_webserv_100
DURING ALL;
Reporting Guide 271

Chapter 10: Sensage SQL
Invisible targets

Sometimes, it's helpful to include a target column for use in query processing that you do not
want included as a column in the result set. Beyond convenience, this also saves client-server
bandwidth for large result sets. Remove such target columns with the AS modifier keyword and
specify a name with two underscores (__) as a prefix.

For example, the following SELECT returns a result set with one column of client-machine DNS
names, sorted by timestamp, even though timestamp is not included in the result set.

SELECT ClientDNS, ts AS __hidden
FROM example_webserv_100
ORDER BY 2
DURING ALL;

DISTINCT Modifier Keyword

Sometimes, a query produces lots of identical records in the result set. If you would like to keep
only the unique records, include the DISTINCT modifier keyword after the SELECT keyword that
begins the statement or subquery.

For example, the following SELECT statement returns a result set with every unique DNS address
seen in a given web log.

SELECT DISTINCT ClientDNS
FROM example_webserv_100
DURING ALL;

IMPORTANT: The DISTINCT keyword causes the SQL query engine to consume a lot of
memory. Be careful about using DISTINCT in SELECT statements on tables with lots of
rows. To enhance performance, Sensage recommends that you use GROUP BY instead
of DISTINCT. For example, the following query returns the same results as the example
above, but in less time:

SELECT ClientDNS
FROM example_webserv_100
GROUP BY 1
DURING ALL;

FIRST and LAST Modifiers

Often, only the first or last few rows of a query output are desired in the results set. To limit the
output of a query to the rows at the top or bottom of the results, include FIRST or LAST and the
number of rows, between the SELECT keyword and the target clause.

As examples:

SELECT FIRST 10 ClientDNS, RespSize
FROM example_webserv_100
DURING ALL;

SELECT LAST 10 ClientDNS, RespSize
FROM example_webserv_100
DURING ALL;
272 Reporting Guide

FROM Clauses
When you combine DISTINCT with FIRST or LAST, the DISTINCT modifier keyword is processed
to derive an intermediate result set. The SQL query engine then applies FIRST or LAST to derive
the final result set.

NOTE: The TOP and BOTTOM modifier keywords are synonyms for FIRST and LAST.

FROM CLAUSES

The FROM clause in a SELECT statement specifies the table to be queried. Unlike standard SQL,
in which FROM clauses can include a list of tables, HawkEye AP SQL SELECT statements
generally only permit one table to be specified. Joins are not supported by HawkEye AP SQL.

This section describes these topics:

• “Syntax of FROM Clauses”, next

• “Table Specifications in FROM Clauses”, on page 273

• “Example FROM Clauses”, on page 274

• “Including Rows from Bad Loads”, on page 275

Syntax of FROM Clauses

The FROM clause has the following syntax:

FROM <table_specification> [<alias_name>] [{INCLUDE_BAD_LOADS}]

The <table_specification> is an expression that evaluates to the name of a table in the EDW.
For more information, see “Table Specifications in FROM Clauses”, next.

As an option, the FROM clause lets you use <alias_name> to specify an abbreviated name for
the table. Table names can be quite long when namespaces are included. Use the alias as a table
identifier in later lines of the SELECT statement.

As an option, the {INCLUDE_BAD_UPLOADS} modifier keyword instructs the SQL query engine to
include rows that were loaded by failed load operations. For more information, see “Including
Rows from Bad Loads”, on page 275.

NOTE: The curly braces ({}) are part of the {INCLUDE_BAD_UPLOADS} keyword.

Table Specifications in FROM Clauses

Table specifications can be identifiers, literals, or expressions that evaluate to the name of a table
in the EDW. For example, the specification can have one of these forms:

The name of a table, including the namespace if there is one:

FROM namespace1.mytable

A string expression that evaluates to the name of a table:

WITH $namespace = "myNamespace"
...
FROM $namespace + "." + "example_webserv_100"
Reporting Guide 273

Chapter 10: Sensage SQL
...

TIP: To learn how to include data from several tables in a single result set, see “UNION ALL
Clauses”, on page 285 and Defining Views with Sensage SQL in Chapter 4, “Administering an
EDW Instance” of the Administration Guide.

Example FROM Clauses

The examples that follow show different ways to specify the table FROM clauses:

Identifiers as the Table Name

String Expressions as the Table Name

Expression Macros as the Table Name

The queries in the examples below all return the distinct IP addresses from the
example_webserv_100 table.

Identifiers as the Table Name

The simplest table specification in a FROM clause is the table name itself, used as an identifier
without enclosing quotation marks.

SELECT distinct ClientIP
FROM example_webserv_100 -- note the table name is an identifier
DURING all;

String Expressions as the Table Name

The table specification in a FROM clause can be a string concatenation expression that resolves
to the name of a table. The following example uses a concatenation expression.

SELECT distinct ClientIP
FROM 'example' + '_webserv_100'
DURING all

When the query engine executes the statement, it queries the example_webserv_100 table. Any
expression or function that returns a string value can be used as the table expression.

Expression Macros as the Table Name

Often there are many tables that share a common schema. Use an expression macro as the table
expression so that you can write a common SELECT statement for all tables that share the
common schema. The expression macro provides a default table name, which can be overridden
when the query engine executes the statement.

WITH $source as 'example_webserv_100'

SELECT distinct ClientIP
FROM $source
DURING all;

For more information, see “Expression Macros”, on page 302.
274 Reporting Guide

DURING Clauses
Including Rows from Bad Loads

The EDW treats each attempt to load log-entries into a table as a single unit of work. If a load
operation fails, any rows loaded into the table before the failure occurs are considered suspect.
When you query a table, rows from failed loads are excluded by default. If you want rows from
bad loads included in query processing, use the {INCLUDE_BAD_UPLOADS} modifier keyword
at the end of the FROM clause.

For example:

SELECT distinct ClientIP
FROM example_webserv_100 {INCLUDE_BAD_UPLOADS}
DURING all;

NOTE:

Include the curly braces ({}).

A successful load does not necessarily insert every row from the source log file. Typically log
files contain data that cannot be parsed and loaded; however, bad data does not prevent these
files from loading successfully. A failed load is caused by a protocol error, such as not
receiving all the expected data or a load cancellation.

If a load and a query operation are running against the same table at the same time and the
load completes before the query, the query may return none, some, or all of the data from the
load (depending on when the query is executed).

For related information, see:

• Tracking Uploads in the EDW in the Managing the EDW Data Store chapter of the
Administration Guide

• system.upload_info in Chapter 4, “Administering an EDW Instance” and
system.raw_upload_info in Chapter 4, “Administering an EDW Instance” in the Administration
Guide

• Monitoring for Inconsistent Loads in Chapter 12, “Troubleshooting” in the Administration Guide

DURING CLAUSES

Most queries of event-log data involve a specific time frame, whether it's “yesterday”, “last year,”
or “1 hour ago.” To facilitate these types of queries, Sensage SQL supports the proprietary
DURING clause, which allows you to specify the time frame for the query.

The DURING clause works with the timestamp column named ts, which is mandatory in every
event-log table. The SQL query engine matches the time frame you specify in the DURING clause
with values in the ts column of the table. Only rows that match the time frame are included in the
results set.

Alternative Formats for DURING Clauses

The DURING clause has several forms:

DURING ALL
Reporting Guide 275

Chapter 10: Sensage SQL
The simplest form of the DURING clause uses the ALL modifier keyword to specify the time
frame. It specifies the entire time frame represented in the table. In other words, the SQL query
engine ignores values in the ts column when it determines which rows to include in the result
set.

DURING <lower_bound>, <upper_bound>

The DURING clause takes two expressions, separated by a comma, that evaluate to
timestamps. Together, the two expressions restrict query results to a single time frame. Only
rows with values in the ts column that fall between the bounding timestamps are included in
the results set. Specify the <upper_bound> and <lower_bound> with expressions that evaluate
to timestamps. For example, you can use functions like _time(), _strptime(), and so on.

DURING [<lower_bound>, <upper_bound>] OR DURING [<lower_bound>,
<upper_bound>] OR DURING ...

The DURING clause lets you specify a series of time frames. Enclose each time frame within
square brackets, and introduce each additional time frame with OR DURING.

For example, the following statement specifies a single time frame. The SELECT statement
returns the values of the ClientDNS and RespSize columns from rows in the
example_webserv_100 table where the ts column is later than or equal to midnight, February 1,
2002, and earlier than or equal to the last second of March 31, 2002.

SELECT ClientDNS, RespSize
FROM example_webserv_100
DURING time('Feb 01 00:00:00 2002'), time('Apr 01 00:00:00 2002');

NOTE: The end time above includes the first microsecond of April 1.

Timestamp Precision in DURING Clauses

The DURING clause compares specified timestamps with the timestamps in the ts. The precision
of ts columns is microseconds, provided the source log entries carry timestamps with that
precision.

You can query time frames with microsecond precision, depending on the format of the varchar
value you provide to the time() function. The examples in this chapter use the Unix date format,
which specifies timestamps with a precision of seconds. Use the ISO 8601 format to specify
timestamps with a precision of microseconds.

For more information, see Chapter 11: SQL Functions.

Subqueries and Views and the DURING Clause

A view or subquery whose FROM clause specifies table(s) instead of views or subqueries must
include a DURING clause. A view or subquery whose FROM clause specifies another view or
subquery instead of a table, does not require a DURING clause.

NOTE: Ensure that the DURING clause behaves as you expect. A badly formed DURING clause
can cause the query to return incorrect results. The sections below describe considerations when
defining the DURING clause.
276 Reporting Guide

WHERE Clauses
Specifying DURING ALL in the View—HawkEye AP Console Usage

If a view has specified DURING ALL as its time range and you query against the view in HawkEye
AP Console, always include the DURING ALL clause at the end of the main select.

If you include the DURING ALL clause in the main select, the run-time user can limit the time
range through the Date Criteria field.

If you do not include the DURING ALL clause in the main select, the EDW will scan all data in the
tables from which the view selects its data.

SPECIFYING ACTUAL TIME RANGE IN THE VIEW—OVERLAPPING TIME RANGES

If the DURING clause in the view specifies an actual time range, and the statement that selects
from the view specifies a different but overlapping time range, the query engine resolves the time
period to the intersection of the two time ranges.

In other words, if the view specifies a time range between January 1 and June 30 of last year and
the SELECT statement specifies a time range between April 1 and August 30 of the same year, the
query engine resolves the time range to April 1 through June 30.

NOTE: The results are the same when the SELECT statement is run from HawkEye AP Console. If
the time range specified in the Date Criteria field overlaps the time range specified in the view, the
query engine resolves the time range to the intersection of the two time ranges.

SPECIFYING ACTUAL TIME RANGE IN THE VIEW—NON-OVERLAPPING TIME RANGES

If the DURING clause in the view specifies an actual time range, and the statement that selects
from the view specifies a different and non-overlapping time range so that the time ranges do not
intersect, the query returns no rows. This behavior is identical to a query whose WHERE clause
evaluates to false.

In other words, if the view specifies a time range between January 1 and June 30 of last year and
the SELECT statement specifies a time range between July 1 and December 30 of the same year,
the query returns no rows.

NOTE: The results are the same when the SELECT statement is run from HawkEye AP Console. If
the time range specified in the Date Criteria field does not overlap the time range specified in the
view, the query returns no rows.

WHERE CLAUSES

Use the WHERE clause to describe the characteristics of rows to be included in the result set. The
WHERE clause takes a conditional expression that specifies which rows to include. Conditional
expressions use the Boolean logic operators AND, OR, and NOT, and comparison operators,
such as BETWEEN, IN, LIKE, <, <=, =, >, and >=.

NOTE: Column filters enhance performance only for queries that use the equals (= or ==) or not
equals (<> or !=) operators. A column filter does not enhance performance with other operators
and functions, such as less than or greater than (<, >, >=, <=), _min(), _max(), _upper(),
_lower(), or IN. For more information, see Defining Column Filters with Sensage SQL in Chapter
4, “Administering an EDW Instance” in the Administration Guide.

For more details, see “Operators”, on page 293.
Reporting Guide 277

Chapter 10: Sensage SQL
For example, the following SELECT statement uses a WHERE clause to ensure that only rows
with RespSize greater than zero are included in the result set.

SELECT ClientDNS, RespSize
FROM example_webserv_100
WHERE RespSize > 0
DURING ALL;

You can also use a subquery with the IN operator inside of a WHERE clause. See “Using
Subqueries with the IN Operator”, on page 295.

GROUP BY CLAUSES AND AGGREGATION QUERIES

Aggregate queries use a GROUP BY clause, a HAVING clause, or contain an aggregate function.
The semantics of aggregate queries differ from ordinary queries in an important way.

Generally, result sets contain one row for each row in the queried table that meets the selection
criteria of the WHERE clause and which falls within the specified time frame of the DURING
clause. In aggregation queries, rows are first collected into groups and the result will contain one
row for each group of rows.

The SQL query engine performs aggregation before arranging the aggregated result rows in the
sequence specified in the ORDER BY clause. When aggregation queries contains the FIRST or
LAST keyword, only the specified first or last aggregation rows are returned in the final result set.

This section describes these topics:

• “Aggregation Partitioning”, next

• “Aggregation Functions”, on page 279

• “Multi-column GROUP BY”, on page 281

• “IN n PASSES”, on page 281

• “SLICE BY Clauses”, on page 282

Aggregation Partitioning

Usually, the GROUP BY option is used to specify how columns are partitioned. In the following
example, the GROUP BY 1 option instructs the SQL query engine to collect all the rows from the
specified time frame, which are separated into groups, one for each unique value of the first
expression in the target specification.

SELECT ClientDNS, max(RespSize)
FROM example_webserv_100
GROUP BY 1
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

The final result will contain ColumnA and the largest value of RespSize in each group

+---+
| Results for SQL file >example-howto-sql-11.sql< |
+---------------+-------+-------------------------+
| ClientDNS | max |
| (varchar) |(int32)|
+---------------+-------*
278 Reporting Guide

GROUP BY Clauses and Aggregation Queries
output is post-sorted
+---------------+-------*
163.191.183.106	7121
194.114.63.8	17252
199.166.228.8	7121
203.164.82.149	17252
208.147.25.154	37361
209.102.202.154	37361
212.242.116.219	0
212.9.190.79	17252
216.239.46.200	12203
216.239.46.58	0
216.239.46.79	0
65.184.59.157	216
65.194.51.154	37361
66.127.84.10	12203
+---------------+-------*

GROUP BY arguments can also be expressions. The above example could have been written as
GROUP BY ClientDNS.

Occasionally, it is useful to compute an aggregate expression over a single group representing all
the values, in which case no GROUP BY is needed. For example, the following query will return at
most one row containing the total number of records in the time range in which RespSize is
positive.

SELECT count(*)
FROM example_webserv_100
WHERE RespSize > 0
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

+---+
| Results for SQL file >example-howto-sql-12.sql< |
+-------+---+
| count |
|(int64)|
+-------*
output is post-sorted
+-------*
| 96|
+-------*

Aggregation Functions

The previous examples demonstrate the use of aggregate functions. Unlike ordinary functions
that return one value for each row, aggregate functions return one value for each group of rows.
These are the aggregate functions you can use in target clauses.

Function Returns

min(x) Smallest value of x in the group

max(x) Largest value of x in the group

count(*) Number of rows in the group

sum(x) Sum of the values of x in the group
Reporting Guide 279

Chapter 10: Sensage SQL
NOTE: For more details about each of these aggregation functions, see “Aggregation Functions”,
on page 337.

The following restrictions apply to aggregate functions:

They may not appear in the GROUP BY column expressions.

They may not appear in the arguments to other aggregates (for example, no min(sum(x))).

Not all aggregates support all data types (for example, no sum(timestamp)).

When aggregates are used in a query, then all columns outside the GROUP BY expressions
must be contained within aggregates.

The last restriction requires further explanation. Consider the invalid query:

-- example of an invalid query
SELECT count(*), ClientDNS

FROM example_webserv_100
WHERE RespSize > 0
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

Because count(*) appears in the expression and no GROUP BY is present, this query will return
at most one row for the group consisting of all records. However the second expression in the
select semantically represents the multiple values of ClientDNS. Note the SQL query engine has
no meaningful way of returning two streams of columns with differing numbers of values in each.

Often when a query such as this is encountered, what is intended is usually something like:

SELECT count(*), _first(ClientDNS)
FROM example_webserv_100
WHERE RespSize > 0
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

+---+
| Results for SQL file >example-howto-sql-14.sql< |
+-------+-------------+---------------------------+
| count | first |
|(int64)| (varchar) |
+-------+-------------*
output is post-sorted
+-------+-------------*
| 96|65.194.51.154|
+-------+-------------*

avg(x) Average of the values of x in the group

median(x) Median of the values of x in the group

_first(x) First of the values of x in the group seen by the
system

_last(x) Last of the values of x in the group seen by the
system

Function Returns
280 Reporting Guide

GROUP BY Clauses and Aggregation Queries
Multi-column GROUP BY

The GROUP BY option also allows grouping on a combination of columns. For example, the
following query returns the number of records in the specified time frame for each unique
combination of the first and second column in the select (in this case ClientDNS and RespSize).

SELECT ClientDNS, RespSize, count(*)
FROM example_webserv_100
GROUP BY 1, 2
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

+---+
| Results for SQL file >example-howto-sql-15.sql< |
+---------------+--------+-------+----------------+
| ClientDNS |RespSize| count |
| (varchar) |(int32) |(int64)|
+---------------+--------+-------*
output is post-sorted
+---------------+--------+-------*
163.191.183.106	204	1
163.191.183.106	7121	1
194.114.63.8	17252	1
199.166.228.8	7121	10
203.164.82.149	17252	1
208.147.25.154	37361	6
209.102.202.154	37361	1
212.242.116.219	0	1

...
212.9.190.79	12935	1
212.9.190.79	17252	1
216.239.46.200	0	1
...		
66.127.84.10	7121	2
66.127.84.10	12203	1
+---------------+--------+-------*

IN n PASSES

The GROUP BY clause can cause the EDW to consume a lot of memory on each host in the EDW
instance. To reduce this memory burden, include the proprietary IN n PASSES subclause at the
end of the GROUP BY clause, where n is an integer in the range of 2-10. Each pass then uses 1/n
as much memory as a complete pass but requires n times as many scans through the data. For
this reason, Sensage discourages the use of this feature unless absolutely necessary for getting
queries to complete -- for queries that don't consume lots of memory, it will dramatically reduce
performance. Here's an example:

SELECT ClientDNS, RespSize, count(*)
FROM example_webserv_100
GROUP BY 1, 2 IN 3 PASSES
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

+---+
| Results for SQL file >example-howto-sql-16.sql< |
+---------------+--------+-------+----------------+
| ClientDNS |RespSize| count |
| (varchar) |(int32) |(int64)|
Reporting Guide 281

Chapter 10: Sensage SQL
+---------------+--------+-------*
output is post-sorted
+---------------+--------+-------*
163.191.183.106	204	1
163.191.183.106	7121	1
194.114.63.8	17252	1
199.166.228.8	7121	10
203.164.82.149	17252	1
208.147.25.154	37361	6
209.102.202.154	37361	1
212.242.116.219	0	1
...		
212.9.190.79	12935	1
212.9.190.79	17252	1
216.239.46.200	0	1
...		
66.127.84.10	7121	2
66.127.84.10	12203	1
+---------------+--------+-------*

SLICE BY CLAUSES

The SLICE BY clause is used with the GROUP BY clause to separate records that would normally
be aggregated in a single group into multiple groups. For example, the following SELECT
statement collects rows into groups according to the value of ClientDNS and creates a distinct
group whenever a record with Url = '/robots.txt' is seen.

SELECT ClientDNS, count(*)
FROM example_webserv_100
GROUP BY 1
SLICE BY Url = '/robots.txt'
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

+---+
| Results for SQL file >example-howto-sql-17.sql< |
+---------------+-------+-------------------------+
| ClientDNS | count |
| (varchar) |(int64)|
+---------------+-------*
output is post-sorted
+---------------+-------*
163.191.183.106	2
194.114.63.8	1
199.166.228.8	10
203.164.82.149	1
208.147.25.154	6
209.102.202.154	1
212.242.116.219	1
212.9.190.79	37
216.239.46.200	3
216.239.46.58	1
216.239.46.79	1
65.184.59.157	1
65.194.51.154	6
66.127.84.10	29
+---------------+-------*
282 Reporting Guide

HAVING Clauses
The SLICE BY option is commonly used with the _fifo() function to split a group of records
based on the previous value of an expression. The _fifo() function implements a simple first-in-
first-out queue and for a given value of <key>, _fifo(<key>,<a>,) always returns b on the
first call and on each subsequent call the previous value of a is returned. This means the following
query will collect the rows into groups according to the value of ClientDNS but will create a
distinct group whenever _int32(ts) increases by more than 10 (that is, more than 10 seconds
have elapsed between records).

SELECT ClientDNS, count(*)
FROM example_webserv_100
GROUP BY 1
SLICE BY _int32(ts) - _fifo(ClientDNS, _int32(ts), _int32(ts)) > 10
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002');

+---+
| Results for SQL file >example-howto-sql-18.sql< |
+---------------+-------+-------------------------+
| ClientDNS | count |
| (varchar) |(int64)|
+---------------+-------*
output is post-sorted
+---------------+-------*
163.191.183.106	2
194.114.63.8	1
199.166.228.8	1
...	
199.166.228.8	1
203.164.82.149	1
208.147.25.154	1
208.147.25.154	1

...
65.194.51.154	1
66.127.84.10	1
66.127.84.10	1
66.127.84.10	27
+---------------+-------*

HAVING CLAUSES

A SELECT statement uses the HAVING clause to eliminate groups from the result. For example,
the following SELECT statement:

collects rows into groups according to the value of the ClientDNS column

counts the records in each group

eliminates groups in which the sum of the values in the RespSize column is greater than 100

SELECT ClientDNS, count(*)
FROM example_webserv_100
GROUP BY 1
HAVING sum(RespSize) > 100
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

+---+
| Results for SQL file >example-howto-sql-19.sql< |
Reporting Guide 283

Chapter 10: Sensage SQL
+---------------+-------+-------------------------+
| ClientDNS | count |
| (varchar) |(int64)|
+---------------+-------*
output is post-sorted
+---------------+-------*
163.191.183.106	2
194.114.63.8	1
199.166.228.8	10
203.164.82.149	1
208.147.25.154	6
209.102.202.154	1
212.9.190.79	37
216.239.46.200	3
65.184.59.157	1
65.194.51.154	6
66.127.84.10	29
+---------------+-------*

NOTE:

The column referenced in the HAVING clause does not need to be included in the SELECT
clause.

Although the query must include at least one aggregated value, it does not require a GROUP
BY clause.

The HAVING clause is similar to the WHERE clause. Both clauses restrict the values in the final
result. The main difference is that the SQL query engine uses the WHERE clause to eliminate
rows before it aggregates them, and it uses the HAVING clause to eliminate groups after it
aggregates them.

ORDER BY CLAUSES

When executing a SELECT statement without an ORDER BY clause, the SQL query engine
returns rows in whatever order they arrive from the storage system. If you include an ORDER BY
clause, the engine sorts rows in an intermediate result set before producing the final result set.
You provide a list of target columns as part of the ORDER BY clause to instruct the SQL query
engine how to sort the results. Target columns can be specified by their ordinal number within the
target clause.

For example, the following SELECT statement specifies that the result set should be sorted in
ascending order of values in the target ClientDNS column, which has an ordinal number of 1.

SELECT ClientDNS
FROM example_webserv_100
ORDER BY 1
DURING ALL;

ORDER BY clauses can have multiple arguments, in which case it sorts the results by the first
argument (the major sort field), using the second argument as the tie-breaker, and so on. The
arguments in ORDER BY clauses can be expressions as well as ordinal numbers. For example:

SELECT ClientDNS, ts
FROM example_webserv_100
ORDER BY ClientDNS, 2
284 Reporting Guide

UNION ALL Clauses
DURING ALL;

Control the sort order of each argument with the ASC or DESC modifier keywords. For example:

SELECT ClientDNS, RespSize
FROM example_webserv_100
ORDER BY _strlowercase(UserAgent) DESC, 1 ASC
DURING ALL;

ORDER BY clauses sort result rows in ascending order by default.

UNION ALL CLAUSES

Generally, a single SELECT statement queries one table and generates a results set. Sometimes
you want a results set with information queried from several tables, where the tables have the
same schema but contain different sets of data.

For example, you may have several different tables that hold weblog entries from different web
servers. The UNION ALL clause lets you combine queries of tables for each region into a SELECT
statement that produces a unified result.

SELECT ClientDNS, RespSize
FROM example_webserv_100
DURING ALL

UNION ALL

SELECT ClientDNS, RespSize
FROM example_webserv2_100
DURING ALL

;

NOTE: HawkEye AP SQL does not support UNION or UNION DISTINCT. You can eliminate
duplicate rows in each subsidiary SELECT statement with the DISTINCT keyword, but you cannot
eliminate rows that are duplicated across the subsidiary results. For information on an alternative
solution, see “Subqueries and UNION ALL Clauses”, on page 308.

Restrictions on UNION ALL

The SQL query engine places the following restrictions on the UNION ALL clause:

All the subselects within the SELECT statement must return the same number of target
columns.

Each target column must have the same data type in each subselect, respectively.

Alternative to UNION ALL

Sensage SQL supports list expressions as an alternative way of producing a unified result set
from two or more similar tables. For more information, see “List Expressions and FROM Clauses”,
on page 315.
Reporting Guide 285

Chapter 10: Sensage SQL
DATA TYPES

This section describes the data types that HawkEye AP SQL supports:

• “bool”, next

• “float”, on page 286

• “int32”, on page 287

• “int64”, on page 287

• “timestamp”, on page 287

• “varchar”, on page 288

bool

The bool data type represents the logical Boolean values “true” and “false.”

The result of CONVERT(<target_data_type>, <bool_value>) is as follows:

float

The float data type represents fractional quantities and very larger or small numbers. The internal
representation is s 64-bit floating-point value in the range of -1.797693e+308 to 1.797693e+308.

The result of CONVERT(<target_data_type>, <float_value>) is as follows:

Target Data
Type

Conversion Result

int32 1 if the Boolean value is logically “true”, or 0 if the Boolean value is logically “false”

int64 1 if the Boolean value is logically “true”, or 0 if the Boolean value is logically “false”

float 1 if the Boolean value is logically “true”, or 0 if the Boolean value is logically “false”

timestamp Not allowed; an exception is raised on attempts to convert bool values to timestamp
values

varchar “true” or “false”, depending on the logical Boolean value

Target Data
Type

Conversion Result

bool Logical “true” if the value is non-zero; logical “false” if the value is 0

int32 The floating-point value converted to the closest integer, without rounding

int64 The floating-point value converted to the closest integer, without rounding

timestamp The floating-point value, which represents the number of seconds since 1/1/1970
GMT, converted to the number of microseconds since 1/1/1970.

varchar Formatted floating-point number. If the number of fractional digits exceeds 6, the
number is formatted in scientific notation; otherwise, regular numeric formatting is
used.
286 Reporting Guide

Data Types
int32

The int32 data type represents signed 32-bit integer values in the range of -2,147,483,648 to
+2,147,483,647. The int32 data type is the default for integer quantities. Use the int64 data type
for larger integer values.

The result of CONVERT(<target_data_type>, <int32_value>) is as follows:

int64

The int64 data type represents large integer quantities. The internal representation is a signed 64-
bit integer value in the range of -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

The result of CONVERT(<target_data_type>, <int64_value>) is as follows:

timestamp

The timestamp data type represents date-and-time-of-day values, expressed as the number of
microseconds since January 1, 1970, GMT. The latest timestamp that can be represented falls in
the year 2038.

The result of CONVERT(<target_data_type>, <timestamp_value>) is as follows:

Target Data
Type

Conversion Result

bool Logical “true” if the value is non-zero; logical “false” if the value is 0

int64 The equivalent 64-bit integer value

float The equivalent floating-point value

timestamp Positive integer values, which represent the number of seconds since 1/1/1970 GMT,
are converted to the number of microseconds since 1/1/1970. If the integer value is
too large, the timestamp is set to the maximum value. For negative integer values, the
timestamp is set to the minimum value.

varchar Unformatted integer value

Target Data
Type

Conversion Result

bool Logical “true” if the value is non-zero; logical “false” if the value is 0

int32 The equivalent 32-bit integer value

float The equivalent floating-point value

timestamp Positive integer values represent the number of microseconds since 1/1/1970 GMT
and are stored in the timestamp value without conversion. For negative integer
values, the timestamp is set to the minimum value.

varchar Unformatted integer value
Reporting Guide 287

Chapter 10: Sensage SQL
varchar

The varchar data type represents character data stored with UTF-8 character encoding. This
encoding enables the representation of international characters from the Unicode character set.

The maximum length of a varchar value is 2147483646 bytes, which is two bytes fewer than two
gigabytes.

The result of CONVERT(<target_data_type>, <varchar_value>) is as follows:

Target Data
Type

Conversion Result

bool Not allowed; an exception is raised on attempts to convert timestamp values to bool
values

int32 The number of seconds since January 1, 1970, GMT, if the value is greater than 0;
otherwise 0.

int64 The number of microseconds since January 1, 1970, GMT, if the value is greater than
0; otherwise 0.

float The number of seconds since January 1, 1970, GMT, if the value is greater than 0;
otherwise 0.

varchar An ISO 8601 formatted timestamp. For more information, see “Converting varchar
Values to timestamp Values”, on page 289.

Target Data
Type

Conversion Result

bool Logical “true” if the value is “true” or “max”; otherwise, logical “false”

int32 The equivalent 32-bit integer value, if the complete varchar value contains only
leading spaces, followed by an optional plus or minus sign, followed by a sequence
of decimal numerals with no thousands or decimal separators; otherwise, 0. If the
varchar value contains only “min” the int32 value is -2,147,473,647; if the varchar
value contains only “max” the int32 value is 2,147,473,647.

int64 The equivalent 64-bit integer value, if the complete varchar value contains only
leading spaces, followed by an optional plus or minus sign, followed by a sequence
of decimal numerals with no thousands or decimal separators; otherwise, 0. If the
varchar value contains only “min” the int64 value is -9,223,372,036,854,775,807; if the
varchar value contains only “max” the int64 value is 9,223,372,036,854,775,807.

float The equivalent floating-point value, if the complete value contains: 1) only leading
spaces, followed by an optional plus (+) or minus (-) sign, followed by a sequence of
decimal numerals with no thousands and at most one decimal separator; 2) only
leading spaces followed by a number expressed in valid scientific notation;
otherwise, 0. If the varchar value contains only “min” the float value is -
1.797693e+308; if the varchar value contains only “max” the float value is
1.797693e+308.

timestamp A string containing the ISO 8601 (Time & Date) representation of the value. For
example, the following varchar value represents a timestamp for October 10th, 1997,
at 6:09 PM, UTC:
'1997-10-10T17:18:09.000000Z'
For more details, see “Converting varchar Values to timestamp Values”, next.
288 Reporting Guide

Data Source Expressions
Converting varchar Values to timestamp Values

The rules for converting a varchar value to a timestamp value are as follows:

If the varchar value is 'min', the timestamp is assumed to be the smallest possible time
supported by the system (the first microsecond of 1/1/1970).

If the varchar value is 'max', the timestamp is assumed to be the greatest possible time
supported by the system: 2,147,483,647,000,000 microseconds since 1/1/1970 (which is
sometime in 2038-01-19).

If the varchar value is a legal ISO 8601 timestamp (for example, 1997-10-
10T17:18:09.000000Z), the timestamp is assumed to be the corresponding microsecond.

If the varchar value has the form 'Mon Day Hour:Min:Sec Year' (for example, Oct 10 17:18:09
1997), the timestamp is assumed to be the first microsecond of the corresponding second.

If the varchar value has the form "MM/DD/YY" (for example, 10/10/97), the timestamp is
assumed to be the first microsecond of the corresponding day.

If the varchar value has the form "MM/DD/YY HH:MM:SS" (for example, '10/10/97 17:18:09')
then the timestamp is assumed to be the first microsecond of the corresponding second.

If the varchar value is a relative time, the timestamp is assumed to be that number of seconds
since 1/1/1970.

Varchar Representations of Durations

A duration is a value representing an amount of time. The internal representation is a structure
with a string containing a number for the amount of time, followed by a string with one of the
following codes that indicates the unit of time:

DATA SOURCE EXPRESSIONS

Data source expressions define the input data used in a SELECT statement.

This section describes the two basic sources of data:

• “Column Expressions”, next

• “Literal constants”, on page 290

Unit Code Unit of Time

usec Microseconds. For example, 5usec.

msec Milliseconds. For example,5msec.

sec Seconds. For example,5sec.

min Minutes. For example,5min.

hr or hour Hours. For example,5hr or 5hour.

day Days. For example,5day.

mon Months. For example,5mon.

yr or year Years. For example,5yr or 5year.
Reporting Guide 289

Chapter 10: Sensage SQL
Column Expressions

A column expression represents a column of data from a table or subquery. In the following
SELECT statement for example, ClientDNS is a column expression representing the ClientDNS
column in the example_websrv_100 table.

SELECT ClientDNS
FROM example_webserv_100
DURING ALL;

Column expressions consist of a letter followed by a series of letters and digits. Generally the
expression must match the name of a column in the table to be queried. Any expression that
resolves to the name of a column can be used as a column expression.

Column expressions may include the table name as prefix, separated with a period (.) from the
column name. For example, the previous statement is equivalent to the following:

SELECT example_webserv_100.ClientDNS
FROM example_webserv_100
DURING ALL;

The data type of a column expression must match the type of the underlying column in the table
or subquery.

OPTIONAL COLUMN EXPRESSIONS

An optional column expression specifies a list of columns. The SQL query processor searches the
list until it finds a column that is present in the table specified in the FROM clause. If none of the
candidates are present, the value of the final (default) expression is returned. The data types of
the columns in the list must be the same.

For example, based on the following SELECT statement, the query processor attempts to return
values from the HostName if it exists in the table to be queried:

SELECT _optional_column(HostName, ClientDNS, '-')
FROM example_webserv_100
DURING ALL;

If the table does not contain a column named HostName, the query processor attempts to return
values from ClientDNS. If neither column is found, the literal constant '-' is returned.

TIP: Optional columns are particularly helpful when used with list expressions in the FROM
clause. For more information, see “List Expressions and FROM Clauses”, on page 315.

Literal constants

A literal constant is simply a value. For example, the value 100 in the following SELECT statement
is a literal constant:

SELECT ClientDNS
FROM example_webserv_100
WHERE RespSize > 100
DURING ALL;

There are four kinds of literals:
290 Reporting Guide

Data Source Expressions
Integer Literals

Floating-Point Literals

String Literals

Typecast Literals

Integer Literals

An integer literal is a series of base 10 digits (i.e. '0', '1', '2', '3', '4', '5', '6', '7', '8' and '9'). In the query
above, 100 is an integer literal. Integer literals have an implicit data type of int32.

Floating-Point Literals

A floating-point literal is a series of base 10 digits followed by a decimal point, some more digits,
and an optional exponent. For example, the following values are floating-point literals:

1000.0 -- one thousand
3.1416 -- pi to 4 decimal places
1.0e6 -- one million

Floating-point literals have an implicit data type of float.

String Literals

A string literal is a sequence of characters enclosed between single or double quotes. For
example, the values ’Feb 01 00:00:00 2002’ and ’Mar 31 23:59:59 2002’ are string literals.
The following values are also string literals:

’’ -- two single quotes make an empty string
"" -- as do two double quotes
’http://www.acme.com’ -- the literal value is everything between the quotes

Quotes themselves are not part of literal values; 'a' is a string literal containing the single
character a.

String literals may include new-line characters. For example, the following text is a single string
literal that begins and ends with a single quote and contains newline codes and double quotes.

’sub Link {
return "$_[0]";

}
’

A string literal may use the standard SQL convention to include embedded quotes by repeating
the quote. The following two literals have the same value:

’adam’’s new shoes’ -- if you use two single quotes (’’) in a literal, it means include a single
quote

"adam’s new shoes" -- or use double quotes around the value to include a single quote
within it

String literals have an implicit data type of varchar.
Reporting Guide 291

Chapter 10: Sensage SQL
SYNTAX FOR DEFINING LONG STRING LITERALS

It can be inconvenient to deal with quoting issues with apostrophes, backslashes, and so on --
particularly in complex and multi-line character strings. For example, you cannot simply cut-and-
paste Perl code when declaring Perl functions, because the code may contain special characters
and generally spans multiple lines.

To make it easier to use long varchar literals, the SQL parser supports here document syntax.
Here document syntax alerts the SQL query engine that a long varchar value with special
characters and multiple lines has been defined. The syntax begins with double chevrons (<<)
followed by a user-defined limit string. From that point forward, all characters, including new lines
and other special characters, are treated as a single varchar value. The value ends with the next
occurrence of limit-string, which must be at the beginning of its own line.

For example:

WITH $bigstring AS <<EOF
This is a very long string with all sorts of funny characters
'~!@#$%&*()_=-<>?,./[]\{}|;':"
and it doesn't matter

EOF

SELECT top 1 $bigstring
FROM example_webserv_100
DURING ALL;

Note that the new-line character immediately after <<EOF and the new-line character before the
final EOF are not part of the varchar value.

TIP: Use here document syntax when you declare user-defined functions and aggregates. For
more information, see “User-Defined Subroutines”, on page 306.

Typecast Literals

A typecast literal is a string literal preceded by a type name. For example, the following values are
typecast literals:

int32 '10' -- The integer 10 as a 32 bit integer

int64 '10' -- The integer 10 as a 64 bit integer

bool '0' -- The Boolean value 0 (false)

float '10.0' -- The floating point value 10.0

timestamp 'Feb 05 00:00:00 2001' -- The timestamp value for February 5th, 2001

varchar '10' -- Same as '10'

Typecast literals specify explicitly the data type of a value. For example, if you specify the integer
literal 10, it will be an int32 value; specify int64 '10' instead if you need 10 to be an int64 value.

DATA PROCESSING EXPRESSIONS

Data processing expressions do the computational work in a SELECT statement.
292 Reporting Guide

Data Processing Expressions
This section describes these topics:

• “Operators”, next

• “Functions”, on page 297

• “Conversion Expressions”, on page 299

• “CASE Expressions”, on page 301

Operators

An operator computes the result of a specific operation on two operands. In the following SELECT
statement, the expression ColumnB > 100 uses a comparison operator to include only rows
where the value of ReapSize is greater than 100. The greater-than symbol (>) is the operator;
ReapSize and 100 are the operands.

SELECT ClientDNS
FROM example_webserv_100
WHERE RespSize > 100
DURING ALL;

This section describes these topics:

• “Math Operators”, next

• “The String Concatenation Operator”, on page 294

• “Comparison Operators”, on page 294

• “Logical Operators”, on page 296

• “Operator Precedence”, on page 297

Math Operators

Math operators perform simple arithmetic computations. These are the math operators supported
by Sensage SQL.

For example, the following SELECT statement uses the multiplication operator to compute the
product of RespSize and 2.

SELECT ClientDNS
FROM example_webserv_100
WHERE RespSize * 2 > 100
DURING ALL;

Symbol Arithmetic Opera-
tion

Example

+ Addition 3 + 2 yields 5

- Subtraction 3 - 2 yields 1

- Unary minus -3 yields the negative of 3; it operates as if the expression were 0 -
3. When you apply the unary minus operator to a negative value, the
result is its absolute value.

* Multiplication 3 * 2 yields 6

/ Division 3 / 2 yields 1.5

% Modulo 3 % 2 yields 1
Reporting Guide 293

Chapter 10: Sensage SQL
Math operations can encounter results that require truncation:

For numeric data types (int32, int64, float), the semantics of the underlying 'C' data type
govern the result if an overflow or underflow occurs.

If the result of a timestamp expression exceeds 2,147,483,648,000,000 microseconds, it is set
to 2,147,483,648,000,000, which falls sometime in the year 2038.

The result of a math operation has a data type that depends on the data types of the operands.
Generally, the result has the data type that is suitable for the result, which may differ from the data
types of the operands.

The String Concatenation Operator

You can use the plus symbol (+) as a string concatenation operator when the operands are
varchar values. For example, the following expression yields the varchar value
“myTableSpace.myTable”.

’myTableSpace’ + ’.’ + ’myTable’

If the result of a string concatenation operation exceeds 32,767 characters, the concatenated
value is truncated.

The result of a string concatenation operation has varchar as its data type.

Comparison Operators

Comparison operators perform simple comparisons between one value and another. The two
values and the comparison operator resolve to a bool value of “true” or “false”, depending on the
outcome of the comparison. Use comparison operators to construct simple conditional
expressions for WHERE, SLICE BY, and HAVING clauses.

BASIC COMPARISON OPERATORS

These are the basic comparison operators supported by HawkEye AP SQL.

For example, the following SELECT statement returns only ClientDNS values from rows in the
example_webserv_100 table where the corresponding value of RespSize is greater than 100.

SELECT ClientDNS
FROM example_webserv_100
WHERE RespSize > 100

Symbol Comparison Opera-
tion

Example Expres-
sion

Result

< Less than 3 < 2 false

<= Less than or equal to 3 <= 3 true

> Greater than 3 > 2 true

>= Greater than or equal to 2 >= 2 true

=

==

Equal to 3 = 2
3 == 2

false

<>

!=

Not equal to 3 <> 2
3 != 2

true
294 Reporting Guide

Data Processing Expressions
DURING ALL;

The result of a basic comparison operation has bool as its data type.

ADVANCED COMPARISON OPERATORS

These are the advanced comparison operators supported by HawkEye AP SQL.

NOTE: HawkEye AP SQL does not support the IS NULL and IS NOT NULL comparison operators,
because the EDW does not support columns with NULL values.

The IN Operator

The IN comparison operator yields true if the value of an operand exists within a list of possible
values. For example, the following SELECT statement returns ClientDNS values from rows where
the value of HttpVers is 'HTTP/1.0' or 'HTTP/1.1'.

SELECT ClientDNS
FROM example_webserv_100
WHERE HttpVers IN ('HTTP/1.0', 'HTTP/1.1')
DURING ALL;

Use the corresponding NOT IN operator to determine if an operand is excluded from a list of
values.

The result of an IN comparison has bool as its data type.

TIP: You can use a list variable as the right-hand operand of the IN operator. For more
information on list variables, see “Working with Lists”, on page 313.

Using Subqueries with the IN Operator

Instead of using the IN operator to specify an explicit list of values, you can use a subquery to
derive the list of values. The subquery can reference the same table, view, or subquery as that
used for the outer query, or the subquery can reference a different view, table, or subquery. The
user must have the required permissions to access the view or table. Correlated subqueries that
reference expressions from the outer query are not allowed. The subquery can be any general
query and can include UNION clauses, WITH clauses, and subqueries. The subquery can have
only one expression in the target list of its SELECT clause.

For example, the following SQL statement uses the WHERE clause to limit the results to those users
in the engineering department:

SELECT username, hostname, result
FROM logins
WHERE username IN

Operator Set Operation Example

IN Is the operand included in a set of
enumerated values?

3 IN (2, 7, 5, 15, 3) yields true

BETWEEN Is the operand included in the set of
values defined by a beginning and
ending range of consecutive values?

3 BETWEEN 2, 15 yields true

LIKE Does the varchar operand match a
particular pattern of characters?

’abc’ LIKE ’a__’ yields true
Reporting Guide 295

Chapter 10: Sensage SQL
(SELECT username FROM staff_list WHERE department="engineering")
DURING ALL;

The BETWEEN Operator

The BETWEEN comparison operator yields true if the value of an operand falls within a range of
possible values. Use the corresponding NOT BETWEEN operator to determine if an operand is
excluded from a range values.

The result of a BETWEEN comparison has bool as its data type.

The LIKE Operator

The LIKE comparison operator yields true if the value of a varchar operand matches a particular
pattern of characters. The matching pattern can contain explicit characters and special wildcard
characters. The percent sign (%) is a wildcard that matches zero or more characters of any kind;
an underscore matches any single character in a particular position within the pattern.

For example, the following SELECT statement returns ClientDNS values from rows where the
value of HttpVers begins with the characters 'HTTP/1'.

SELECT ClientDNS
FROM example_webserv_100
WHERE HttpVers LIKE 'HTTP/1%'
DURING ALL;

Because the matching pattern includes the percent wildcard (%), rows with ’HTTP/1.0’ and
’HTTP/1.1’ are returned in the result set.

NOTE: Sensage SQL supports neither asterisks (*) nor questions marks (?) as wildcard
characters, nor does it support the optional ESCAPE subclause in LIKE comparisons.

Use the corresponding NOT LIKE operator to determine if a varchar operand does not match a
pattern of characters.

The result of a LIKE comparison has bool as its data type.

Logical Operators

Logical operators perform simple “true” or “false” comparisons between expressions that
themselves resolve to bool values. Use logical operators to construct compound conditional
expressions for WHERE, SLICE BY, and HAVING clauses.

These are the logical operators supported by HawkEye AP SQL.

Operator Logic Operation Examples

AND Logical AND; true only
if both operands are
true.

• true AND true yields true

• true AND false yields false

• false AND false yields false

OR Logical OR; true if
either operand is true.

• true OR true yields true

• true OR false yields true

• false OR false yields false

NOT Logical negation • NOT true yields false

• NOT false yields true
296 Reporting Guide

Data Processing Expressions
In the following SELECT statement, the WHERE clause has a compound conditional expression
that compares two simple conditional expressions with the AND logical operator.

SELECT ClientDNS
FROM example_webserv_100
WHERE (RespSize > 100) AND (HttpVers = 'HTTP/1.1')
DURING ALL;

The statement returns values in the ClientDNS column only for rows where both comparisons are
true; the value of RespSize must be greater than 100, and the value of HttpVers must be the
string 'HTTP/1.1'.

The result of a logic operation has bool as its data type.

Operator Precedence

When several operators appear in a complex expression, they take precedence in the following
order.

Functions

Function expressions perform specialized calculations that return a single result. For example, the
following SELECT statement uses two functions to calculate timestamp values for the DURING
clause:

SELECT ClientDNS
FROM example_webserv_100
DURING time('Feb 01 00:00:00 2002'),

_timeadd(time('Feb 01 00:00:00 2002'), 1, 'day')
;

The first function, time(), calculates the timestamp value that corresponds to the literal constant
'Feb 01 00:00:00 2002'. The function takes one argument, a varchar that contains a date. It
yields a timestamp value as its return value.

The second function, _timeadd(), also calculates a timestamp value. It takes three arguments
instead of one, and it uses a different algorithm to compute its return value. The first argument is a
timestamp, to which a specified amount and unit of time are added. This function interprets the
second two arguments and adds them to the first. In the example above, the _timeadd() function
returns a date that is one day later than the specified timestamp. In other words, this function

Symbol Operation

- Unary minus

* / % Multiplication, division, and modulo

+ - Addition, subtraction, and string
concatenation

< <= > >= = <> IN BETWEEN LIKE Comparison

NOT Logical negation

AND Logical AND

OR Logical OR
Reporting Guide 297

Chapter 10: Sensage SQL
returns "Feb 02 00:00:00 2002". Notice that this function also contains the time() as an
argument.

Function Syntax

In general, a function expression comprises the name of the function, followed by a comma-
separated list of arguments enclosed in parentheses. For example, the following are function
expressions:

_now() -- a function that takes no arguments; it returns a timestamp for the current system
time.

time('02/01/01') -- a function that takes a varchar argument; in this case the argument is a
literal constant, but any expression that yields a varchar representation of a date and time-of-
day could be used.

_strcat(ColA, ColB, ColC) -- a function that takes three varchar arguments and returns a
varchar value that concatenates them; the arguments to this function are column expressions.
The data types of the columns ColA, ColB, and ColC must be varchar.

The result of a function has the data type that the function declaration defines.

RELATED TOPICS

To learn about built-in Sensage SQL functions, including their arguments and their return
types, see Chapter 11: SQL Functions.

To learn how to declare user-defined functions, see “User-Defined Subroutines”, on page 306,
and Chapter 12: Perl Subroutines.

Asterisks as Column-Expression Arguments

An asterisk (*) can be used as a special column-expression argument. The SQL query engine
replaces the asterisk with a comma-separated list of the columns in the table identified in the
FROM clause.

For example, the following SELECT statement:

SELECT _strcat(*)
FROM example_webserv_100
DURING ALL;

is equivalent to:

SELECT _strcat(ts, ClientIP, ClientDNS, Method, Url,
HttpVers, RespCode, RespSize, Referrer,
UserAgent, RespTime)

FROM example_webserv_100
DURING ALL;

COUNT(*)

When an asterisk is used as an argument, the count() aggregate function operates as a special
case. Instead of replacing the asterisk with a comma-separated list of the columns in the table,
the SQL query engine treats count(*) as if it were count(1). The the special nature of the
count(*) expression is supported for compatibility with standard SQL.
298 Reporting Guide

Data Processing Expressions
The SORT BY Modifier Keyword

When an aggregate function is called, it is passed arrays of column values in the order by which
the underlying column expression generates them. However, if a function expression that takes
column expressions as arguments is followed by the SORT BY modifier keyword, the SQL query
engine first sorts the column values on the specified function argument before invoking the
function.

Consider the following SELECT statement:

SELECT ClientDNS,
_strsum(Url, ts) SORT BY 2

FROM example_webserv_100
GROUP BY 1
DURING ALL ;

The _strsum() aggregate function ignores the second argument as a target column. However,
the Url values will be sorted according to the value of ts before _strsum() is invoked. The
_strsum() function receives the ClientDNS values in the order of the ts values. This is often
useful when using _strsum() to concatenate string values.

NOTE: Unless SORT BY is specified, the order of the records passed into an aggregate is non-
deterministic. Two invocations can yield different sort orders. The EDW runs queries in parallel
across a cluster of machines and cannot guarantee which machines will produce records the
fastest.

The DISTINCT Modifier Keyword

The DISTINCT modifier keyword ensures that only the unique sets of values are passed into
aggregate functions.

SELECT count(DISTINCT ClientDNS)
FROM example_webserv_100]
DURING ALL;

If an aggregate function takes multiple arguments, the DISTINCT modifier keyword makes the
entire set unique. If any argument differs, the set is considered unique and the aggregate is
called. The DISTINCT modifier keyword is useful with Perl aggregates.

NOTE: The DISTINCT and SORT BY modifiers can work together; both operations happen at
once.

IMPORTANT: The SQL query engine can use a lot of memory to process function
expressions that use the DISTINCT modifier keyword.

Conversion Expressions

A conversion expression performs a simple conversion of a data value from its current data type
to another. Use conversion expressions to put data values into the form expected by subsequent
operations.

There are three kinds of conversion expressions:

CONVERT Expressions

Function-style Conversion Expressions
Reporting Guide 299

Chapter 10: Sensage SQL
Typecast Literal Conversion Expressions

Typecast Literal Conversion Expressions

CONVERT Expressions

A CONVERT expression has the form:

CONVERT(<target_data_type>, <value_to_convert>)

Use one of these allowed target data types.

For example, the following SELECT statement uses a CONVERT expression to convert values in
the ts column from timestamp values to human-readable, character-based values:

SELECT CONVERT(varchar,ts)
FROM example_webserv_100
DURING ALL;

Function-style Conversion Expressions

A function-style conversion expression has one of the following forms, depending on the target
data type:

The example below illustrates how you can use the _varchar() function as an alternate to the
example SELECT statement for CONVERT expressions:

SELECT _varchar(ts)
FROM example_webserv_100
DURING ALL;

Target Data
Types

bool

int32

int64

float

timestamp

varchar

Conversion
Function

Conversion Result

_bool(x) Equivalent to CONVERT(bool,x)

_int32(x) Equivalent to CONVERT(int32,x)

_int64(x) Equivalent to CONVERT(int64,x)

_float(x) Equivalent to CONVERT(float,x)

_timestamp(x) Equivalent to CONVERT(timestamp,x)

_varchar(x) Equivalent to CONVERT(varchar,x)
300 Reporting Guide

Processing Directives
Typecast Literal Conversion Expressions

A typecast literal conversion expression has the form:

<typecast_literal> '<literal_value>'

Use one of these typecast literals, depending on the target data type.

This means the example SELECT statement for CONVERT expressions could also be written as:

SELECT varchar ts
FROM example_webserv_100
DURING ALL;

CASE Expressions

A CASE expression supports conditional target specifications. CASE expressions have the
following syntax:

CASE WHEN <conditional-expression> THEN <value>
WHEN <conditional-expression> THEN <value>
...
ELSE <value>

END

For example, the following SELECT statement returns result rows with VARCHAR values of <1k,
1k, or >1k, depending on whether the value of RespSize is less than, equal to, or greater than
1024.

SELECT CASE WHEN RespSize < 1024 THEN "<1k"
WHEN RespSize = 1024 THEN "1k"
ELSE ">1k"

END
FROM example_webserv_100
DURING ALL;

PROCESSING DIRECTIVES

The proprietary WITH keyword introduces clauses that direct how the SQL query engine
processes SELECT statements. WITH clauses let you declare symbols, such as named
constants, user-defined functions, and subqueries, that you can use within SELECT statements.
WITH clauses also let you configure the execution environment in which queries run. The syntax
of WITH clauses depends on the kind of directive the WITH clause declares.

Typecast Literal

bool

int32

int64

float

timestamp

varchar
Reporting Guide 301

Chapter 10: Sensage SQL
This section describes these topics

• “Macros”, next

• “User-Defined Subroutines”, on page 306

• “Subqueries”, on page 307

• “Table-Name Substitutes”, on page 309

• “WHERE Clause Filters”, on page 310

• “Settings”, on page 311

• “The Scope of Processing Directives”, next

Macros

This section describes these topics:

• “About Macros”, next

• “Expression Macros”, on page 302

• “Star Macros”, on page 303

• “Multiple Declarations of a Given Macro”, on page 305

• “Resolving Macro Identifiers”, on page 305

• “Overriding Multiple Macro Declarations”, on page 305

About Macros

Macros are processing directives that declare constant values that can be used within a SELECT
statement. Macro definitions have the following syntax:

WITH $<id> AS <value> [OVERRIDE][, $<id> AS <value> [OVERRIDE] [...]]

For each occurrence of $<id> after the declaration, the query engine replaces it with the constant
value. The values of macros remain constant throughout the execution of SELECT statements.
Macros are similar to literal constants, not programming variables.

Their benefits of macro directives over literal constants are:

You declare the constant value in one location, and the value is used wherever the macro
identifier is encountered in the remainder of the SELECT statement. To change the value of a
literal constant repeated throughout a statement, you must find and change every occurrence.

Macro identifiers can be much shorter than the values they define. Using the shorter, macro
identifier in place of the longer literal expression makes your SELECT statements easier to read
and comprehend.

You can use macros in Perl subroutines so that your subroutines and your SELECT statement
can use the same values during execution. For more information, see “Using Macros in Perl
Subroutines”, on page 410.

Expression Macros

An expression macro defines a named expression. The expression can be a column expression, a
literal constant, or a complex expression that involves comparisons, functions, and logic
operations.
302 Reporting Guide

Processing Directives
For example, the following SELECT statement returns the number of log entries between 2/1/01
and 2/2/01:

WITH $start as time('Feb 01 00:00:00 2002'), $end as _timeadd($start, 1, 'day')

SELECT count(*)
FROM example_webserv_100
DURING $start, $end;

The preceding and following statements are equivalent, but the statement that uses expressions
macros is easier to read.

SELECT count(*)
FROM example_webserv_100
DURING time('Feb 01 00:00:00 2002'),

_timeadd(time('Feb 01 00:00:00 2002'), 1, 'day');

Expression macros are useful to break up complex expressions into more understandable forms
and to enable parameterized queries.

For more information on how to use expression macros as query parameters, see:

“Parameterizing Your Query”, on page 184

Querying Data in Chapter 3, “Loading, Querying, and Managing the EDW”in the Administration
Guide.

AUTOMATIC EXPRESSION MACROS

When you use the atload command to load source log entries into the EDW, you write a
Sensage SQL SELECT statement that describes the columns in the target table that will store the
source log data. The command declares some expression macros automatically for use in you
SELECT statement.

For more information, see Automatic Expression Macros in Chapter 3, “Loading, Querying, and
Managing the EDW” in the Administration Guide.

Star Macros

WITH can be used to declare macros that can be used as shortcuts for specifying multiple
expressions in the same way that asterisks (*) can be used as a shortcut for specifying the all the
columns in a table. For example, the following query returns the minimum and maximum values
for the timestamp column:

WITH $exprs as '*'(min(ts) AS 'min time', max(ts) as 'max time')

SELECT $exprs, count(*)
FROM example_webserv_100
DURING ALL;

The above query is equivalent to:

SELECT min(ts) AS 'min time', max(ts) as 'max time', count(*)
FROM example_webserv_100
DURING ALL;
Reporting Guide 303

Chapter 10: Sensage SQL
Star macros may be used in the target clause, the GROUP BY clause, and the ORDER BY clause.
For example:

-- isolate the actual group and order criteria from the rest of the query
WITH $groupkey AS '*'(ClientDNS as "hostname" ASC, ClientIP as "ipaddress" DESC)

SELECT $groupkey, count(*)
FROM example_webserv_100
GROUP BY $groupkey
ORDER BY $groupkey
DURING ALL;

During the ordinary macro expansion process, the SQL compiler sees the $groupkey macro in
the target list, finds the corresponding WITH statement, and replaces the $groupkey macro in the
target list with the specified targets.

Here are some additional examples:

EXAMPLE 1

The following query:

WITH $columns AS '*'(ts AS 'Time', Host, ClientIP)

SELECT $columns
FROM test
DURING ALL;

returns the same result as:

SELECT ts AS 'Time', Host, ClientIP
FROM test
DURING ALL;

EXAMPLE 2

A star macro can contain a general list of expressions and can be used with functions in the
obvious way:

WITH $args1 AS '*'("%m/%d/%Y %H:", ts)
WITH $args2 AS '*'("%02d", 30*((_int32(ts)%3600)/1800))

SELECT _timef($args1) + _sprintf($args2) AS 'time'
FROM test
DURING ALL;

EXAMPLE 3

A star macro may contain other star macros, as long as they are not recursive. Example 1 above
could be written as:

WITH $host AS Host
WITH $columns1 AS '*'($host, ClientIP)
WITH $columns AS '*'(ts AS 'TIME', $columns1)

SELECT $cols
FROM test
DURING ALL;
304 Reporting Guide

Processing Directives
Multiple Declarations of a Given Macro

In general, only one declaration for any given macro should be present in a SELECT statement.
Including two declarations of the same macro typically results in a SQL syntax error.

The exceptions to this general rule are as follows:

Resolving Macro Identifiers

When the SQL query engine encounters a macro identifier in a SELECT statement, it searches
back through the statement for the macro declaration. Conceptually, it is looking for the “closest”
declaration of the macro.

Overriding Multiple Macro Declarations

The OVERRIDE keyword is helpful when a macro identifier has multiple declarations within the
statement. When the SQL processor searches for the closest declaration, it continues searching if
the closest one does not include the OVERRIDE keyword. It continues searching further back for
a declaration with the OVERRIDE keyword. If it finds an overriding declaration, the processor uses
it. If no overriding declaration is found further back, it uses the closest non-overriding definition.

For example:

SET $definition TO NULL
SET $frame TO $current-frame

WHILE $frame NOT NULL DO
SET $this-def TO FIND($macro IN $frame)
IF $this-def NOT NULL DO
IF IS_OVERRIDE($this-def) DO

SET $definition TO $this-def
EXIT-WHILE

ENDIF
IF $definition NOT NULL DO

SET $definition TO $this-def
ENDIF

SET $frame TO PARENT_OF($frame)
ENDWHILE

IF $definition IS NULL DO
ERROR("Undefined Symbol: %s", $macro)

ENDIF

By default, the SQL processor checks for redundant WITH statements of the same type (for
example, two Perl functions with the same name) and throws an error. This behavior is especially

Exception Description

Multiple Scopes Local definitions of the same macro can be made as long as each such
definition is in a different scope.

OVERRIDE For any given macro, there can be up to one definition that includes the
OVERRIDE keyword. This definition will override any subsequent definitions for
that macro in the scope in which it is declared, and any nested scopes thereof.
Note that it is legal to have more than one OVERRIDE definition of the same
macro; however, the first OVERRIDE definition takes precedence.
Reporting Guide 305

Chapter 10: Sensage SQL
important when building libraries of WITH clauses, to avoid accidentally using the same name
twice.

However, it is also helpful to be able to override the default WITH declarations inside of these
libraries, subqueries, and PTL files. Thus, any WITH statement may be appended with the word
OVERRIDE, and it will override any future definitions with the same name (and type).

Putting it together:

include howto-sql-30.inc
WITH $count AS 52

SELECT $count
FROM example_webserv_100
DURING ALL;

If howto-sql-30.inc contained WITH $count AS count(*), then you would get an error, but if it
contained WITH $count AS count(*) OVERRIDE, the query would return the number of rows in
the table.

User-Defined Subroutines

User-defined subroutines are processing directives that let you declare custom Perl functions or
aggregates. Once declared, you can use these subroutines within SQL SELECT statements. The
declarations of user-defined subroutines have the following syntax:

WITH <id> AS [BUILTIN] ’<language>’ [<return_type>] {FUNCTION|AGGREGATE} <<EOF
<declaration>

EOF [OVERRIDE]

The optional BUILTIN keyword causes the declaration to be treated as if the function is built into
the SQL query engine. This allows you to invoke the function directly by name. If you omit the
BUILTIN keyword, you must invoke the function indirectly with the _perl() or _perlagg() SQL
functions. For more information on these built-in SQL functions for calling Perl subroutines, see
Chapter 12: Perl Subroutines.

The value for ’<language>’ should always be ’perl15’.

The value of <return_type> is any of the supported HawkEye AP SQL data types: bool, float,
int32, int64, and varchar. The data type of the return value is varchar by default.

The keywords FUNCTION and AGGREGATE indicate whether <declaration> is a Perl function
or a Perl aggregate.

The value of <declaration> is a Perl script declaration. Generally, the <declaration> is
enclosed within here document syntax, because declarations span multiple lines and use special
characters, including semi-colons. For more information, see “Syntax for Defining Long String
Literals”, on page 292.

TIP: You can use macros in Perl subroutines. For more information, see “Using Macros in Perl
Subroutines”, on page 410.
306 Reporting Guide

Processing Directives
DECLARING PERL FUNCTIONS

The following example declares a Perl function called Link, which returns an HTML link based on
its argument.

WITH Link AS BUILTIN 'perl5' FUNCTION <<EOF
sub Link {
return "$_[0]";

}
EOF

SELECT Link('http://' + ClientDNS)
FROM example_webserv_100
DURING ALL;

If the value of ClientDNS for a row in the table contains the text ’www.acme.com’, the result set
contains a corresponding row with the value:

’www.acme.com’

For a more detailed explanation, see “Declaring Perl Functions”, on page 406.

DECLARING PERL AGGREGATES

The following example declares a Perl aggregate called last(). Because the declaration does
not include the BUILTIN keyword, the SELECT statement invokes last() with the built-in
_peragg() SQL function.

WITH last AS 'perl5' AGGREGATE <<EOF
my %state;
sub last { $state{$_[1]} = $_[2]; }
sub last_final { return $state{$_[1]}; }

EOF

SELECT ClientDNS, _perlagg('last', ClientDNS, RespSize)
FROM example_webserv_100
GROUP BY 1
DURING ALL;

Within the declaration of Perl aggregates, you define two Perl subroutines and any global
variables that the two subroutines can access. The first subroutine has the same name as the Perl
aggregate declaration. The second subroutine has the same name with a suffix of _final, and it
must have return statement.

For a more detailed explanation, see “Declaring Perl Aggregates”, on page 407.

Subqueries

Subqueries are processing directives that declare named SELECT phrases for use in your main
SELECT statement. The result sets of subqueries can be used as if they were tables in the EDW.
Declarations of subqueries have the following syntax:

WITH <id> AS (<subquery> [OVERRIDE][, <id> AS (<subquery>) [OVERRIDE][...]]
Reporting Guide 307

Chapter 10: Sensage SQL
For example, the following SELECT statement queries the result set from the subquery named
timestamps:

WITH timestamps AS (SELECT DISTINCT ts FROM example_webserv_100 DURING ALL)

SELECT *
FROM timestamps;

You can nest subquery declarations, as the next example shows:

WITH subq1 AS (WITH subq2 AS (SELECT ts FROM foo DURING ALL) SELECT * FROM subq2)

SELECT *
FROM subq1;

The main SELECT statement queries for its results from subq1. The results of subq1 are selected
from another subquery, subq2, which is declared within the first subquery.

Subqueries are useful when multiple levels of aggregation are required. For example, the
following query returns the number of distinct values of ClientDNS:

WITH subquery AS (SELECT ClientDNS
FROM example_webserv_100
GROUP BY 1
DURING time('Feb 01 00:00:00 2002'),

time('Mar 31 23:59:59 2002')
)

SELECT count(*)
FROM subquery;

IMPORTANT: For performance reasons, avoid subqueries that generate too many rows in
their result sets; that is, 100,000 rows returned by a subquery is reasonable, but millions
of rows may result in performance problems.

Subqueries with DURING Clauses

The DURING clause is required only in subqueries that select data directly from tables.
Subqueries and SELECT statements that specify subqueries in the FROM clause instead of tables
do not require DURING clauses unless they are run from HawkEye AP Console.

IMPORTANT: When you create a subquery that selects data directly from tables, ensure
that the DURING clause behaves as you expect. A badly formed DURING clause can
cause the query to return incorrect or no results. For more information, see “Subqueries
and Views and the DURING Clause”, on page 276

Subqueries and UNION ALL Clauses

Subqueries can include UNION ALL clauses. For example:

WITH subq AS (... UNION ALL ...)

SELECT *
FROM subq;
308 Reporting Guide

Processing Directives
When the query engine executes the preceding SELECT statement, it executes the nested
subqueries and produces a union of their result sets. The query engine then executes the main
SELECT statement against the intermediate result set produced by the subquery subq.

CREATING UNIONS OF SUBQUERIES

You can create a union of subqueries in the main SELECT statement. For example:

WITH subq1 AS (...)
WITH subq2 AS (...)

SELECT *
FROM subq1

UNION ALL

SELECT *
FROM subq2;

Arbitrary nesting of subqueries and/or UNION ALLs is allowed.

ACHIEVING DISTINCT UNION RESULTS

With subqueries, you can overcome the limitation that UNION DISTINCT is not supported.
Perform the UNION ALL operations in a subquery declaration. Then, use DISTINCT in the main
SELECT statement. For example:

WITH subquery AS (SELECT ClientDNS, RespSize
FROM example_webserv_100
DURIING ALL

UNION ALL

SELECT DISTINCT ClientDNS, RespSize
FROM example_webserv2_100
DURIING ALL

)

SELECT DISTINCT * FROM subquery;

Subqueries and the WHERE clause

You can use the IN or NOT IN operators inside of a WHERE clause to limit results to an explict list of
values. These operators can also use subqueries to create the list of results. See “Using
Subqueries with the IN Operator”, on page 295.

Table-Name Substitutes

Table-name substitutes are processing directives that declare table names which substitute for
table identifiers in subqueries and in SELECT statements. Declarations of table-name substitutes
have the following syntax:

WITH <id> AS TABLE <table> [OVERRIDE][, <id> AS TABLE <table> [OVERRIDE][...]]
Reporting Guide 309

Chapter 10: Sensage SQL
The value of <id> is a table identifier that occurs elsewhere within subqueries or the SELECT
statement. The value of <table> is the table name that should substitute for <id> when the query
engine executes the compiled subqueries and SELECT statement.

For example:

WITH websrv AS TABLE example_webserv_100

SELECT count(*)
FROM websrv
DURING ALL;

NOTE: You can achieve the same effect with the --tableswap option of the atload command.
For more information, see the topic Querying Data in Chapter 3, “Loading, Querying, and
Managing the EDW” in the Administration Guide.

WHERE Clause Filters

WHERE clause filters are processing directives that declare a conditional expression to be added
to WHERE clauses for a specified table. Declarations of WHERE clause filters have the following
syntax:

WITH WHERE <table_id> AS (<conditional-expression>)

The value of <table_id> is a table identifier that occurs in FROM clauses within subqueries or the
SELECT statement. The value of <conditional-expression> is a conditional expression that
references columns in the identified table. When the query engine executes the SQL statement, it
combines the WHERE clause filter and the explicit conditional expression of the WHERE clause. It
uses the AND logical operator as the conjunction. If there is no explicit WHERE clause, the
WHERE clause filter alone is applied.

For example, the following SELECT statement declares a WHERE clause filter to ensure that only
rows from the example_webserv_100 table that have ’HTTP/1.0’ in their HttpVers columns
are included in the results set, regardless of the conditions in the explicit WHERE clause.

WITH WHERE example_webserv_100 AS (HttpVers = 'HTTP/1.0')

SELECT count(*)
FROM example_webserv_100
WHERE ReapSize > 100
DURING ALL;

The preceding example returns the same results as if the WHERE clause had been written as
follows:

WHERE (HttpVers = 'HTTP/1.0') AND (ReapSize > 100)

You can include multiple WITH WHERE declarations for the same table, and the effect is
cumulative. Each <conditional-expression> is combined the others using the AND logical
operator as the conjunction.

TIP: If the <conditional-expression> is long and needs to span multiple lines, use here
document syntax. For more information, see “Syntax for Defining Long String Literals”, on page
292.
310 Reporting Guide

Processing Directives
Settings

Settings are processing directives that control the SQL query engine and configure the context in
which SQL statements execute. Declarations of settings have the following syntax:

WITH <setting> <value> [OVERRIDE]

The following settings can be controlled through WITH clauses.

You can declare the same setting multiple times. The earliest declaration takes effect and
overrides any later declarations of the same setting.

The TIMEZONE Setting

One of the most common settings is TIMEZONE. It changes how the SQL query engine interprets
timestamps when the time zone is unspecified. Many source log entries do not include time-zone
indicators, and some formats for timestamps passed to the time() function cannot specify time
zones. The setting has the following format:

WITH TIMEZONE ’<time_zone>’

Setting Value Meaning

TIMEZONE GMT Sets a default time zone for manipulating timestamps

NOWTIMESTAMP The current time The timestamp returned by _time(’now’)

MINTIMESTAMP 1970-01-
01T00:00:00

The timestamp returned by
_time(<time_specification>)

MAXTIMESTAMP 2038-01-
19T03:14:07

The timestamp returned by
_time(<time_specification>)

GROUPCACHEPARTITIO
NS

Controls behavior of the SQL Aggregation engine

GROUPCACHEPARTITIO
NING

Controls behavior of the SQL Aggregation engine

AGGCACHEPARTITIONS Controls behavior of the SQL Aggregation engine

AGGCACHEPARTITIONIN
G

Controls behavior of the SQL Aggregation engine

FIFOCACHEPARTITIONS Controls behavior of the SQL Aggregation engine

FIFOCACHEPARTITIONIN
G

Controls behavior of the SQL Aggregation engine

DIVIDEBYZERO Controls behavior when a divide-by-zero condition
occurs

MODULOBYZERO Controls behavior when a modulo-by-zero condition
occurs

SUPRESSECEPTIONS Controls whether error conditions stop query
execution

ALLOWEXITPERL false Controls whether Perl subroutines can exit

DGBVARS Supports debugging

NOPROGRESS false Suppresses the generation of progress indicators
Reporting Guide 311

Chapter 10: Sensage SQL
The allowed values for <time_zone> are listed in “Appendix B: Time Zones” in the Administration
Guide.

The following SELECT statement declares the TIMEZONE setting to be Pacific Time. The varchar
arguments to the two time() expressions in the DURING clause do not specify their time zones.
The TIMEZONE setting tells the query engine to interpret their time zones as Pacific Time. Without
the setting, the query engine assumes their time zones are GMT.

WITH TIMEZONE "PST8PDT"

SELECT count(*)
FROM example_webserv_100
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002')

Specifying time zones is important to ensure that queries return the intended results, especially
when the source of the data generates times in a different time zone than yours.

The Scope of Processing Directives

Processing directives are classified by one of two types of scope:

Global State Modifiers

Local Definitions

Global State Modifiers

Directives that are global state modifiers affect the entire SELECT statement, including
subqueries. You can declare them only in the top level of a SELECT statement. Syntax errors
occur when you include global state modifiers as parts of subquery declarations.

These directives have the scope of global state modifiers.

Local Definitions

Directives that are local definitions affect only the parts of SELECT statement in which they are
declared. You can declare them anywhere within a SELECT statement, including subqueries.

These directives have the scope of local definitions.

Directive Syntax For more information, see...

WITH <id> AS [BUILTIN] ’<language>’
[<return_type>] {FUNCTION|AGGREGATE} <<EOF
<declaration>

EOF [OVERRIDE]

“User-Defined Subroutines”, on
page 306

WITH <id> AS TABLE <table> [OVERRIDE] “Table-Name Substitutes”, on page
309

WITH WHERE <table_id> AS (<conditional-expression> “WHERE Clause Filters”, on page
310

WITH <setting> <value> [OVERRIDE] “Settings”, on page 311
312 Reporting Guide

Working with Lists
WORKING WITH LISTS

Event-log data often has fields that contain lists of data. HawkEye AP SQL provides facilities for
working with lists.

This section describes these topics:

• “Multiple Values as Lists”, next

• “Functions that Return Lists”, on page 313

• “List Acceptors”, on page 314

• “INTO Keyword”, on page 315

• “List Expressions and FROM Clauses”, on page 315

• “EXPLODE Keyword”, on page 316

• “EXPLODE BY Keyword Phrase”, on page 316

• “Some Helpful List Examples”, on page 317

Multiple Values as Lists

Expressions and functions normally evaluate to a single value during query processing. However,
there are times when you want them to evaluate to a list of values. When an expression or
function evaluates to a list, you indicate whether you want to access the list or the single return
value.

The syntax options for indicating your intent are:

<expression>

Access the single return value and discard the list.

<expression> INTO <varname>

Access the single return value and save the list in <varname> for later use

@<expression>

Access the list and discard the single return value

@<expression> INTO <varname>

Access the list and saves save the list in <varname> for later use. This form is rarely used,
because <varname>[0] contains the normal single value; that is, it is not lost.

Functions that Return Lists

These functions can return lists instead of single return values when you precede them with the
list symbol (@). Without the symbol, these functions return a single value.

Directive Syntax For more information, see...

WITH $<id> AS <value> [OVERRIDE] “Macros”, on page 302

WITH <id> AS (<subquery>){OVERRIDE} “Subqueries”, on page 307
Reporting Guide 313

Chapter 10: Sensage SQL
_strmatchlist()

If your regular expression contains matching sets of parentheses, the matching text between
them becomes a return value. The normal return value is the number of elements matched.

_strsplit() and _strsplitxsv()

When parsing strings into multiple elements, the results are returned as a list. The normal
return value is the number of elements parsed.

_perl()

Perl functions can call Addamark::setInto() to return multiple values. See the “List Support
and Perl Functions”, on page 409, for more information.

_into()

The _into() function takes its arguments and stores them in a list. Specifically, _into(*) can
be used to convert the list of table-columns (or subquery-targets) into a list.

_lookup()

The multiple columns of each row are returned as a list. The first column is also copied into the
normal result value, which makes _lookup() easier to use when there is only one result
column.

List Acceptors

The following types of expressions can consume lists. The @ symbol forces the SQL query
engine to access the list, rather than the regular return value from the expression.

<listgen> INTO <varname>

This clause can be appended after a list generator expression to give the list a name, such that
the list elements can be used in other expressions. For more details, “INTO Keyword”, next.

EXPLODE @<listgen>

Transposes the list into multiple records. For more details, “EXPLODE Keyword”, on page 316,
and “EXPLODE BY Keyword Phrase”, on page 316.

<expression> IN @<listgen>

Matches the <expression> against the elements of <listgen> and returns Boolean “true” if
there is a match.

_perl()

Perl functions can be called with lists as their arguments, that is, _perl("myfun", arg1,
arg2, @<varname>, arg3). Perl programmers will recognize similarities with lists in Perl. For
more information, see Chapter 12: Perl Subroutines.

_strcat() and _strjoin()

You can concatenate the values of a list together.
314 Reporting Guide

Working with Lists
INTO Keyword

The INTO keyword accepts multiple return values and puts them in a named a list variable. Use of
the INTO keyword has the following syntax:

<expression> INTO <listname>

The <listname> element of the syntax is called the INTO variable. You can use INTO variables
elsewhere in the SQL statement. Use array index notation to access individual items in the list.
Actual list items begin at <listname>[1]. For convenience, the item at <listname>[0] has a
copy of the normal expression result.

The following example uses INTO to capture multiple matches from _strmatchlist():

SELECT match[1], match[2]
FROM example_webserv_100
WHERE _strmatchlist(UserAgent, '([^(]*)\\(([^)]+)') INTO match
DURING ALL;

In this query, the expressions match[1] and match[2] represent the additional values returned
by the query.

Generally, INTO variables can be used anywhere in the SQL statement like any other expression
or column identifier. For example, INTO variables can be passed into functions and used in
mathematical or string expressions. However, causality must be preserved and loops are not
allowed. For example:

-- this is illegal because it creates an INTO-loop
SELECT _strmatchlist(foo, 'x=(..),y=(..)') INTO bar,

_strmatchlist(bar, 'x=(..),y=(..)') INTO foo,
FROM Table
DURING ALL;

The INTO keyword is optional. Use it only when you want to capture the list that an expression or
function can return. You cannot use the INTO directive with an expression that produces only
single return values. For example the following is invalid:

4+5 INTO sum -- incorrect use of INTO with a single-value expression

The expression 4+5 only evaluates to a single value, never to a list.

List Expressions and FROM Clauses

List expressions may be used in the FROM clause to specify an implicit union of the specified
tables. For example, the following query returns the distinct ClientIP values from both the
example_webserv_100 and example_webserv2_100 tables:

 SELECT DISTINCT ClientIP
 FROM @_list('example_webserv_100', 'example_webserv2_100')
 DURING all;

Whenever the SQL query engine sees a FROM clause with a list expression, the engine verifies
that all the tables in the list contain all the columns selected, and that all the types of all the
columns are the same.
Reporting Guide 315

Chapter 10: Sensage SQL
IMPORTANT: The DISTINCT keyword causes each query to produce unique intermediate
results, but the final result set does not eliminate duplicates found in the separate tables.

EXPLODE Keyword

The EXPLODE keyword lets you transpose a list of values into a target column. For example, you
may need to pass list elements into aggregates. The keyword has the following syntax:

EXPLODE <list_expression> [AS <target>]

The SQL query engine iterates through <list_expression>, replicating the input row in the
output result set for each list element. The current list element is substituted in each iteration.

For example:

-- returns three records: "fred 12000", "mary 12000" and "bob 12000"
WITH subquery as (

SELECT TOP 1 ts
FROM example_webserv_100
DURING ALL

)

SELECT EXPLODE @_strsplit(",", "fred,mary,bob") AS name, 12000 AS salary
FROM subquery -- only one record

;

The expression that follows the EXPLODE keyword must evaluate to a list variable.

IMPORTANT: You may use only one EXPLODE keyword per SELECT phrase. A
statement can have two or more EXPLODE keyword only if each one exists in a separate
subquery.

EXPLODE BY Keyword Phrase

The EXPLODE BY keyword phrase lets you transpose a list embedded in a varchar expression.
The phrase has the following syntax:

EXPLODE <varchar_expression> BY '<separator>'

The value of <varchar_expression> must contain a list of items separated by the special
character specified by <separator>. The expression to explode can be a single-byte or multi-
byte string

For example, the expression in the statement below uses a comma (,) to separate the values in
list:

WITH subquery as (
SELECT TOP 1 ts

FROM example_webserv_100
DURING ALL

)

SELECT EXPLODE "fred,mary,bob" BY ',' ,12000 AS salary
FROM subq -- only one record
316 Reporting Guide

Working with Lists
;

A common use of EXPLODE BY is to compute histograms, as the next example shows:

WITH subquery as (
SELECT EXPLODE Url BY '/' AS component

FROM example_webserv_100
DURING ALL

)

SELECT component, count(*)
FROM subquery
GROUP BY 1
ORDER BY 2 DESC

;

Some Helpful List Examples

The following examples are often helpful in understanding lists.

_strjoin(",", @_strsplit(",", "a,b,c")) == "a,b,c"
_strjoin(",", _strsplit(",", "a,b,c")) == _strsplit(",", "a,b,c") == "3" (number
of elements parsed)
_if(_strsplit(",", "a,b,c") INTO v > 0, v[2], "") == "b"

-- should return 12, which is four records each exploded three times
WITH subq as (select top 4 ts from example_webserv_100 during all)
SELECT COUNT(EXPLODE @_strsplit(",", "a,b,c"))

FROM subq
Reporting Guide 317

Chapter 10: Sensage SQL
318 Reporting Guide

CHAPTER 11

SQL Functions

Sensage SQL provides these functions for use in expressions in Sensage SQL Select statements:

• “Conditional Evaluation Functions”, next

• “List Functions”, on page 321

• “Lookup Functions”, on page 323

• “Aggregation Functions”, on page 337

• “Statistical Aggregate Functions”, on page 344

• “Logarithmic and Exponential Functions”, on page 348

• “Numeric Rounding Functions”, on page 351

• “String Functions”, on page 353

• “Time Functions”, on page 374

• “Network Address Functions”, on page 387

• “Miscellaneous Functions”, on page 394

NOTE: For type-conversion functions, see “Conversion Expressions”, on page 299.

CONDITIONAL EVALUATION FUNCTIONS

This section describes these functions that perform conditional evaluations.

_if()

The _if() function evaluates a Boolean expression and returns different values for true or false.

Synopsis

_if(<condition>, <expr1>, <expr2>)

Description

If <condition> evaluates to true, the _if() function returns <expr1>. Otherwise, it returns
<expr2>. Both expressions must evaluate to the same data type. You can use _if() recursively,
as either <expr1> or <expr2>.

The following example uses _if() recursively as the second expression argument:

_if(<condition1>, <expr1>, _if(<condition2>, <expr2>, <expr3>))

Func-
tion

 Purpose Page

_if() Evaluate a Boolean expression and return different values for true and false page 31
9

_iftable() Return different expressions depending on the table being queried page 32
0
Reporting Guide 319

Chapter 11: SQL Functions
The function evaluates <condition1> and returns <expr1> if it is true. Otherwise, the inner
_if() function is invoked, and the outer _if() returns the result of evaluating <condition2>. If
<condition2> is true, the outer _if() returns <expr2>; otherwise, it returns <expr3>. You can
achieve further recursion if you specify _if() for <expr2> or <expr3>.

Expression arguments are evaluated only when their corresponding conditions are found to hold.
For example, in simple, non-recursive uses of the function, <expr1> is evaluated only when
<condition> is true. This is called short-circuit boolean evaluation. Short-circuit evaluation
avoids unnecessary processing and the unwanted side effects of expression evaluation, such as
evaluating Perl functions that modify global Perl variables.

Arguments

Return Value

The return data type of the _if() function is the data type of the last argument.

Exceptions

The _if() function raises SQL processing exceptions under any of these conditions:

The condition arguments do not evaluate to a data type of bool, int32, or float.

The data types of expression arguments do not match the data type of the last argument.

Example

The following query returns the IP addresses for clients which visited the '/robots.txt' URL
more than three times.

SELECT ClientDNS
FROM example_webserv_100
GROUP BY 1
HAVING sum(_if(Url='/robots.txt',1,0)) > 3
DURING ALL;

_iftable()

The _iftable() functions returns different expressions depending on the table being queried.

Synopsis

_iftable(<type>, <name1>, <expr1>, [<name2>, <expr2>[...], <else_expr>)

Argument Description

<condition> A bool, int32, or float expression

<expr1> The value returned when <condition> evaluates to false or 0.

<expr2> The value returned when <condition> evaluates to true or a non-zero value.
320 Reporting Guide

List Functions
Description

If the table being scanned is <name1>, the _iftable() function returns <expr1>; otherwise, it
tries each successive name. When a match is found, the function returns the corresponding
expression. If no match is found, the function returns <else_expr>.

Expression arguments to _iftable() are evaluated only when the corresponding condition is
true. This is called short-circuit Boolean evaluation. Short-circuit evaluation avoids unnecessary
work and provides correct behavior for expressions that have side effects, such as Perl functions
that modify global Perl variables.

Arguments

Return values

The return type of the _iftable() expression is the data type specified by the first argument.

Exceptions

The _iftable() raises an SQL processing exception under any of these conditions:

The data types of <name> arguments are not varchar.

The data types of <expr> arguments do not match the data type specified in the <type>
argument.

LIST FUNCTIONS

This section describes functions that perform operations on lists of expressions or values.

_list()

The _list() function creates a list variable from a list of values.

Argument Description

<type> The data type of the return value

<name> Expressions that evaluate to table names

<expr> Expressions returned when the table being scanned matches a specified name

<else_expr> The expression returned when the table being scanned matches none of the names

Func-
tion

 Purpose Page

_list() Create a list variable from a list of values page 32
1

_nth() Return a value from a list variable page 32
2
Reporting Guide 321

Chapter 11: SQL Functions
Synopsis

[@]_list(<expression>[, <expression>[...]])

Description

Evaluates each <expression> and makes it available as the corresponding element of the list
variable. The list variable returned by the function is used with the EXPLODE keyword and the IN
comparison operator.

For for more information on the use of the list variables the _list() function returns, see “EXPLODE
Keyword”, on page 316 and “Advanced Comparison Operators”, on page 295.

Arguments

Return Value

_list() returns the first element in the list.

@_list() returns the list variable.

List variables are sometimes called INTO variables, because the INTO keyword also creates list
variables.

For more information, “INTO Keyword”, on page 315.

Example

The following query filters on a comma-separated list of items.

SELECT ClientDNS
FROM example_webserv_100
WHERE _strmatch(UserAgent,'([^]+)','') IN

@_list("Mozilla/4.0", "Mozilla/4.08", "Mozilla/4.5")
DURING ALL;

_nth()

The _nth() function returns a value from a list variable.

Synopsis

_nth(<type>, <index>, <list_expr> [, <expr>[...]])

Description

Returns the value of the specified item in a list of expressions or values, converting it to the
specified <type>, if necessary.

For related information, see:

Argument Description

<expression> Expressions that evaluate to scalar values
322 Reporting Guide

Lookup Functions
• “INTO Keyword”, on page 315

• “_list()”, on page 321

• “_strmatch()”, on page 358

• “_strsplit()”, on page 360

• “_strcat()”, on page 371

Arguments

Return Value

The _nth() function returns the value from <list_expr> that corresponds to the specified
<index>. If necessary, the value is converted to the data type specified by <type>. The first value
in <list_expr> has 0 as its index. If the value of <index> is negative, it is considered to be 0. If
the value of <index> exceeds the number of values in the list, the last expression is returned. If
any @ list expressions are present in the list of expressions, their list values will be expanded prior
to selection.

Exceptions

The _nth() function raises a SQL processing exception if the value selected by the index cannot
be converted to the specified data type.

Example

The following query splits the values into a list and returns the value of the fifth item in the list. If
_nth() has fewer than five items defined as values, the last item will be used.

SELECT _nth(int32, 4, @_strsplit("/", Referrer))
FROM example_webserv_100
DURING ALL;

LOOKUP FUNCTIONS

This section describes these functions that look up and return values based on values passed as
arguments.

Argument Description

<type> The data type of the return value

<index> An int32 expression that evaluates to an index within <list_expr>

<list_expr> A list expression

Function Purpose Page

_lookup() Look up values stored in external data sources page 32
4

_rev_dns() Looks up the DNS host name for a specified IP address page 33
4

_tablematch() Returns a list of table and view names that match a pattern page 33
4

Reporting Guide 323

Chapter 11: SQL Functions
_lookup()

The _lookup() function uses values stored in an EDW table to retrieve and return values stored in
flat files. This function enables you to provide consistent and meaningful values for data that is
stored inconsistently. You can also use this function to correlate data between tables.

NOTE: The character encoding of the lookup file must be UTF-8.

Synopsis

_lookup(<filename>, <key>, <default_key_value_pair>[, <option_string>)

Description

The <key> argument identifies a column in an EDW table or view. The _lookup() function uses
the value of <key> in each table row to search for a corresponding value in the lookup file
identified by <filename>. If the function finds the <key>, it returns the corresponding value from
the field in the lookup file. If it finds no match, the function returns <default_key_value_pair>,
which provides a default value for a specific key.

Use <option_string> to identify the formatting of the lookup file. Also use <option_string> to
specify which field(s) in the lookup file contain values to return to your query. These arguments
are optional only because the function provides default values if you do not specify a value. For
information about the default values, see “Basic Lookup Options”, on page 327.

You can also use <option_string> to tailor the operation of the _lookup() function. For
example, you can specify how to parse the lookup value associated with <key> to extract values
that are returned in a list instead of as a single value. For an example of such a query, see
“Example #3: Accepting Multiple Return Values”, on page 330.

The data in the lookup file is stored in character-separated fields. The number of fields in a row
can vary from row to row.

Arguments

Argument Description

<filename> The fully qualified filename of the lookup file.
NOTE:
• If the value of <filename> begins without a slash (/), the lookup file and its path are

relative to the dsroot directory.

• The lookup file must be located in the same path on all EDW hosts.
For more information, see “Working with Lookup Files”, on page 331.

<key> The column in the EDW table whose value is used to look up a value in the
lookup file.
324 Reporting Guide

Lookup Functions
SPECIFYING OPTIONS IN THE OPTION-STRING ARGUMENT

The value of the <option_string> is a list of options separated by semi-colons (;). The general
syntax is:

<option_name>=<setting>[;<option_name>=<setting>[...]]

The options are classified as follows:

“Basic Parsing Options”, next

“Basic Lookup Options”, on page 327

TIP: Some _lookup() function options are required or very useful for basic queries. Others are
needed only to perform advanced lookups. To facilitate usage of this function, this section
provides tips that separate the basic from the advanced options.

Basic options include:

parsing options—the field-separator character in the lookup file. If the file uses whitespace as the
separator, you do not need to specify this basic parsing option.

lookup options—the field in the lookup file that serves as the key and its data type, and the fields that
contain the values to return and their data types

Advanced options include:

parsing options—the quotation-mark character in the lookup file; the function ignores separator
characters within the quoted string and strips the quotation marks. You can also specify a non-default
escape character that keeps the function from escaping special characters not enclosed within the
specified quoting character.

lookup options—the character in the lookup file that identifies a comment, which causes the function to
ignore text that follows the comment character.

<default_key_value_pair> If the lookup fails, the function uses the default key and textual equivalent to
form the return value. This argument must:
• Evaluate to a constant; that is, it cannot vary by row.

• Provide a default key value and a corresponding text value for each field represented in
the option string.
For example, if the option string returns values for columns 2 and 4,
<default_key_value_pair> must provide a default value the key as well as for
four fields. The function parses the four fields to return the default value for columns 2
and 4. For an example, see “Example #3: Accepting Multiple Return Values”, on page
330.

<option_string> Describes the format of the lookup file, identifies the field in the lookup file to
use as the key, and specifies which field(s) to return.
NOTE:
• The <option_string> argument must evaluate to a constant; that is, it cannot vary

by row.

• This argument is optional because default values are provided for its two critical
options. For more information, “Basic Lookup Options”, on page 327.

For more information, see “Specifying Options in the Option-String Argument”,
next.

Argument Description
Reporting Guide 325

Chapter 11: SQL Functions
Basic Parsing Options

The basic options to control parsing of the strings in the lookup file are fieldsep and escape.

fieldsep

fieldsep=<style>[,<style>[...]]

For the style, specify a comma-separated list of field separators used in the lookup file. The
default style is "whitespace", which allows multiple whitespace characters between fields. You
can specify <style> in any of the following ways:

{comma, csv, tab, tsv, pipe, psv, colon, semi, semicolon}—interprets the separator as any
single instance of any of the included characters; this style is the equivalent of str:<char>.

str:<string>—sets a literal string as the separator; for example, fieldsep=str:foo uses foo as
the separator.

char:<ascii_num>—specifies the ASCII number of the character to use as the separator; for
example, fieldsep=char:13 specifies a new-line character as the separator.

{ws|whitespace}—sets any number of contiguous whitespace characters as the separator; in other
words, allows multiple whitespace characters between fields.

escape

escape={backslash|none}

backslash—treats \<char> as <char>

This setting specifies treatment of the backslash character and field separators as well as
ordinary characters. For example, if your escape character is a backslash and your data
includes two consecutive backslashes (\\), a backslash is treated as part of the data. The
escape character defaults to backslash

TIP: Basic usage of the lookup() function does not require changing the default value for the
escape option. If you change the value to none, you must also set the quoting option.

none—special characters cannot be escaped to be included in data values unless the data values are
enclosed with the quoting character.

Advanced Parsing Option

The function also provides the quoting parsing options, which allow you to specify the style of
the quotation mark character. Its syntax is:

quoting=<style>[,<style>[...]]

Comma-separated list of quoting options allowed, defaults to “singleordouble”.

{single|single-quote}—if single-quotes are found around a string field, then ignore
separator characters in that string and also strip the quotes.

{double|double-quote}—same as single-quote, but for double-quotes

char:<ascii_num>—specifies the ASCII number of the character to use as the quotation
symbol; for example, quoting=char:37 sets the percent (%) character as the quoting character
326 Reporting Guide

Lookup Functions
Advanced Usage: Rule of Thumb When Specifying Parsing

If the data in your lookup file contains field separators, use quoting options to isolate the data in
specific fields. If the data in your lookup file contains quotation marks, use escape characters to
isolate the data in specific fields.

For example, assume your escape character is backslash and your field separator is a comma.
Assume also that the lookup data associated with a <key> has the following fields, one of which
uses a comma (,) to separate an apartment number (#416) into a different field from street
address (9617 Delaware St.):

234, Vijay Kumar, 9617 Delaware St., #416, Berkeley, CA, 94705
567, Jose Sanchez, 123 Main St., Oakland, CA, 94612

To force the apartment number into the same field as street address, you can use
escape=backslash and format the data row as follows:

234, Vijay Kumar, 9617 Delaware St.\, #416, Berkeley, CA, 94705

Alternately, you could use quoting=single and format the data row as follows:

234, Vijay Kumar, '9617 Delaware St., #416', Berkeley, CA, 94705

NOTE: If commas, single quotes, and double quotes are part of your data, you can use
fieldsep=char:<n>, where <n> is the ASCII number of a character that is not in your data. For
example, use fieldsep=char:037 to specify a percent symbol (%) as the separator and format
the data row as follows:

234% Vijay Kumar% 9617 Delaware St., #416% Berkeley% CA% 94705

NOTE: The _strsplitxsv() function uses these same parsing options. To learn more about the
function, see “_strsplitxsv()”, on page 361.

Basic Lookup Options

Use the following options to control how to perform the lookup.

keycol

keycol=<n>[:<type>]

This option identifies the field in the lookup file to use as the key when performing the lookup.
Indexing begins at 1. You can append the field number with an optional type name, which
forces the EDW engine to parse this column as the specified data type. The following example
specifies that the key is the third field in the lookup file and the value of this field should be
treated as a 32-bit integer:

keycol=3:int32

Allowable types are int32, int64, float, timestamp, and varchar. The default for the keycol
option is 1:varchar. The default for <type> is varchar.

valcols

valcols=<column_spec>[,<column_spec>[...]]
Reporting Guide 327

Chapter 11: SQL Functions
This option specifies which fields to return when performing lookups. The format for
<column_spec> is:

<n>[:<type>]

Indexing begins at 1. You can append each column number <n> with an optional specification
of its data type. The default for the valcols option is 2:varchar. The default for <type> is
varchar.

Advanced Lookup Option

The function also provides the commentprefix lookup option, which allows you to configure the
function to ignore comments in the lookup file. Its syntax is:

commentprefix=<style>

Typically, the value of <style> is the string that begins a comment line. Examples include #
(shell-style or perl-style), -- (SQL-style), or // (C++-style).

If the value of <style> starts with the string inline:, the function locates comments on lines
with actual values. For example, if you specify inline:#, a lookup file can contain lines like the
following:

normal comment
another normal comment -- whitespace is allowed.
123,col2val,col3val # this is an inline comment (including the whitespace)
124,col2val # this is a comment, col3val #<-- oops, col3val is ignored

NOTE:

In the example above, the value in the third column (col3val) is ignored because it is included
in the inline comment.

The default for <style> is ""; that is, no comments are allowed in the lookup file.

Examples

This section provides three examples of _lookup() function usage:

• “Example #1: Providing Meaningful and Consistent Values”, next

• “Example #2: Correlating Data Between Tables”, on page 330

• “Example #3: Accepting Multiple Return Values”, on page 330

EXAMPLE #1: PROVIDING MEANINGFUL AND CONSISTENT VALUES

A common usage for the _lookup() function is to provide consistent and meaningful values for
data that is stored inconsistently. For example, data collected from multiple sources often
represents "success" and "failure" in different ways. Typically these values are stored as integers
to reduce disk space. You can create a lookup file that stores corresponding text values, and use
_lookup() to convert integer values stored in the EDW to text values that are meaningful to your
users.

HawkEye AP IntelliSchema presents examples of such lookup-file usage. IntelliSchema is a pre-
defined data structure that uses SQL views to present unified access to data from disparate
systems. Analytics reports generally query IntelliSchema views to display normalized event data
for common event types from multiple information systems.
328 Reporting Guide

Lookup Functions
For example, one set of IntelliSchema views returns user-login information. Each view creates a
result column to store integer values that represent the success or failure of the login. Each view
uses the userLogin.lookup file to provide meaningful textual equivalents to the stored integer
values. The lookup file contains all possible login values and their textual equivalent. Three lines
are:

-1,Unknown
0,Failure
1,Success

To return meaningful values about the success of the login, the user-login IntelliSchema views
include the following statement in the target list of the SELECT statement:

_lookup("<path>/userLogin.lookup",result,"-
1,Unknown","fieldsep=comma;keycol=1:int32;valcols=2:varchar") AS result,

Given that the general syntax is:

_lookup(<filename>, <key>, <default_key_value_pair>[, <option_string>)

The statement above uses the _lookup() function to:

Locate the lookup file: "<path>/userLogin.lookup"

Specify which column in the table represents the key: result

Specify the default key/value pair: "-1,Unknown"

Specify which field in the lookup file contains a value that should match a value in the key
column: keycol=1:int32

Specify which field in the lookup file to return as the value of the key column:
valcols=2:varchar

When this statement is run against an EDW table, the EDW engine steps through the table and
retrieves the value of the result column for each row. It compares the value to one of the values in
the first field of the lookup file. If it finds a match, it displays the value of the second field as the
output of the result column.

Because the default value is "-1,Unknown", if no value in the result column matches a value in
the first field of the lookup file or the value of the result column evaluates to -1, the query output
displays Unknown as the value of the result column.

NOTE: The default value is specified as two fields to match the two fields specified in the option
string:

the value of the key column as stored in the EDW table

the corresponding lookup-file value that should be returned to represent the value of the key
column.

The IntelliSchema login views contain the privilege column as well as the result column. The
privilege column stores integer values that represent the login type: either standard or privileged.
Because the values stored in this column are different from those in the result column, the
userLogin.lookup file contains two additional lines. The full lookup file contains:

-1,Unknown
Reporting Guide 329

Chapter 11: SQL Functions
0,Failure
1,Success
20,Privileged
21,Standard

As illustrated above, the same lookup file enables lookup for two different columns. The user-
login IntelliSchema views include both of the following statements in the target list of the SELECT
statement:

_lookup("<path>/userLogin.lookup",result,"-
1,Unknown","fieldsep=comma;keycol=1:int32;valcols=2:varchar") AS result,
_lookup("<path>/userLogin.lookup",privileged,"-
1,Unknown","fieldsep=comma;keycol=1:int32;valcols=2:varchar") AS privileged

The second statement behaves like the first but, when this statement is run against an EDW table,
the EDW engine steps through each row of the table and retrieves the value of the privilege
column.

EXAMPLE #2: CORRELATING DATA BETWEEN TABLES

Data often derives from disparate sources and applications. You can use key-field information to
link the data across EDW tables and lookup files.

For example, assume your EDW instance uses separate tables to store data about sales staff and
customers. The sales table stores the sales person’s name, territory, and phone number. The
customer tables stores company name, street address, city, state, and country. Because
territories change frequently, assume also that your site uses an application to dump territory
information regularly into a flat file. The flat file contains each territory and the states they contain.

To report all customers assigned to each salesperson, you would create a query that:

Retrieves each customer’s state from the customer table

Matches each state to a territory by running _lookup() against the territory file

For each territory, locates the salesperson from the sales table

EXAMPLE #3: ACCEPTING MULTIPLE RETURN VALUES

Whereas Example #1: Providing Meaningful and Consistent Values above illustrates usage of the
_lookup() function in the SELECT statement, the example below illustrates usage of the function
in the WHERE clause. It also illustrates use of the INTO keyword to accept multiple return values
and to put them in a named list variable.

The lookup data for this example is similar to that used in “Advanced Usage: Rule of Thumb
When Specifying Parsing”, on page 327:

234, Vijay Kumar, 9617 Delaware St.\, #416, Berkeley, CA, 94705
567, Jose Sanchez, 123 Main St., Oakland, CA, 94612, 415-644-9753

NOTE:

The first row above uses the backslash (\) character to escape the comma (,) . If the comma
were not escaped, it would separate an apartment number (#416) into a different field from
street address.
330 Reporting Guide

Lookup Functions
To keep the apartment number in the same field as the street address, you must specify the
backslash as the escape character in your _lookup() call.

The second row above contains a phone number in addition to the standard information.

The _lookup() function does not require every row in the lookup file to contain the same
number of fields. However the fields you return must be in the same position in every row of the
file.

The query below specifies settings for the fieldsep, escape, keycol, and valcols options:

SELECT
UserId,
userinfo[1] as UserName,
userinfo[2] as State

FROM
sometable

WHERE
_lookup("/tmp/users", UserId, "-1,anonymous,-,-,-",
"fieldsep=comma;keycol=1:int32;valcols=2,5;escape=backslash")
INTO userinfo != -1

DURING ALL;

The query above uses the value of the UserId column to locate each user’s name and state from
the lookup file and loads the values into the userinfo list. This query differs from the basic
example, which used a value in the lookup file (Unknown) as its default value. If no value in the
UserId column matches a value in the first field of the lookup file or the value of UserId evaluates
to -1, the query output displays anonymous as the value of the UserName column. This query
also specifies a hyphen (-) as the default value for the remaining columns. In other words, if no
value in the UserId column matches a value in the first field of the lookup file or it evaluates to -1,
the query output displays a hyphen as the default value of column 5 (State) as well as the default
value for columns 3 and 4.

For information on the INTO keyword, see “INTO Keyword”, on page 315.

Exceptions

The _lookup() function raises SQL processing exceptions under any of the following conditions:

The <key> or the fields in <default_key_value_pair> cannot be parsed as the data type
specified in <options_string>.

The file specified by <filename> cannot be opened or read.

Memory to hold the cached lookup file is exhausted.

Working with Lookup Files

Typically, the lookup file is either a static file that rarely changes, or the result of a “dump” from an
application or corporate database, such as the list of active users.

IMPORTANT: To use the _lookup() function, the lookup file has to be propagated to
every host in the EDW instance so that the EDW can read it. Specifically, this file must
have the same path on every host and be readable by the EDW server running on each
system (for example, readable by the “lms” user). One implementation, for example, is to
Reporting Guide 331

Chapter 11: SQL Functions
mount the directory containing the lookup file onto each system. For an alternative
configuration, see “Centralizing the Lookup File”, on page 333.

DEBUGGING AND SCALE-UP

NOTE: The _lookup() function works by loading the entire file into memory. If a lookup file is too
big, the EDW starts paging to disk, and eventually ends your query. For this reason, Hexis Cyber
Solutions recommends testing on subsets of large lookup files first, then increasing the subset
until the whole file has been loaded.

Caching the Lookup Data: Requirements and Limitations

To enhance performance, the lookup file is cached in memory. The first time it is called, the
_lookup() function does the following:

1 Loads a lookup table from the lookup file into main memory.

2 Performs subsequent calls to this cached main memory representation.

IMPORTANT: Because the lookup data is cached:

The administrator must manually distribute the lookup file to every host in the EDW instance and
ensure that each copy is identical. For more information, see “Working with Lookup Files”, on page
331. For information on how to distribute the file, see Copying Files and Directories to Each Host
(clsync) in Chapter 2, “Configuring and Managing HawkEye AP” in the Administration Guide

The lookup data must fit into memory. For more information, see “Calling the _lookup() Function While
Loading or Querying”, next.

NOTE: The following is also true of the lookup data:

The administrator must manually extract the data into the lookup file.

For example, _lookup() cannot automatically download a webpage (URL) that contains
lookup data.

The lookup key values must be unique.

The _lookup() function assumes that each key in the lookup file matches at most one
record. This function cannot perform searches that scan or return multiple records.

There is no support for XML-based lookup files.

Binary data is supported, but it cannot contain NULL characters (ASCII 0) or new-line
characters(ASCII 13).

There is no support for network-based or dynamic lookup data.

CALLING THE _LOOKUP() FUNCTION WHILE LOADING OR QUERYING

As with other EDW features, lookups can be performed during loads, during queries, or both. To
use the lookup() function during loading, include it in the SELECT statement in the PTL.

Generally, Hexis Cyber Solutions recommends performing lookups during loads rather than
during queries:

Lookups into giant lookup files require lots of memory. More memory is available during loads.
332 Reporting Guide

Lookup Functions
The amount of memory required is more consistent during loads. The amount of memory
required during queries depends on the details of the query, such as the number of groups that
the GROUP BY and SLICE BY clauses specify.

If multiple queries use the results of the lookups, they can share the results if the results have
been loaded to disk, instead of each performing the lookup.

Updates to lookup files occur intermittently, not continuously. It can be easier to determine the
currency of the lookup data if the lookup occurs during loads. When each query performs its
own lookups, it is more difficult to determine which version of the lookup data was used.

Performing lookups while loading makes the SELECT statement used for queries easier to
read.

However, lookups during queries makes sense under these conditions:

If you want to save storage space, perform lookups at query time to avoid creating additional
columns.

Query-time lookups can improve load performance.

IMPORTANT: Hexis Cyber Solutions recommends that you use your own data to test the
advantages of load-time and query-time lookups to determine which approach works
best in your situation.

The best reason to perform query-time lookups is the need for “fresher” results. For example,
assume you use this function in a query that returns the top 10 users from California. If you use
load-time lookups, the precise definition of this query is “top 10 users whose traffic had come
from California at the time of the request”. If you use query-time lookups, the precise definition is
“top 10 users who currently live in California, regardless of where they lived at the time of the
request”.

In some cases, security analysts will want to run both types of queries, and you will have to
perform both load-time and query-time lookups.

CENTRALIZING THE LOOKUP FILE

It is possible to store the lookup file on a host that uses a network file system (such as Samba or
NFS) to access each host in the EDW instance. This configuration simplifies the updating process
because you no longer have to copy the lookup file to every host in the instance (for example,
using clsync). Generally, centralizing the lookup file makes sense only if the lookups are
performed rarely; otherwise, concurrent queries can clog the network or file server.

To estimate the performance impact of centralizing the lookup file, assume that each host in the
instance needs to read the file completely for each lookup call. If you have 10 EDW hosts, and
each mounts the same file server, and both the EDW hosts and file server are using 100mbps
network connections, each EDW host achieves at most 10mbps as they clog the server with
requests. This performance concern diminishes if:

the lookup file is small—because the EDW hosts can cache the whole file

the file server can keep up with the EDW instance, for example, lots of disks reading in parallel
plus faster networking like gigabit ethernet (1gbps) or 10gigE (10gbps).
Reporting Guide 333

Chapter 11: SQL Functions
_rev_dns()

The _rev_dns() function performs a kind of reverse DNS look up. Instead of starting with a DNS
host name and returning the IP address of the host, the function takes an IP address and returns
the DNS host name.

Synopsis

_rev_dns(<IP_address>)

Description

Returns a string containing the host name for the server with the specified IP address.

Arguments

Return Value

The _rev_dns() function returns a varchar value containing the host name.

Exceptions

The _rev_dns() function raises a SQL processing exception when the data type of
<IP_address> is neither int32 nor varchar.

_tablematch()

If preceded by the @ expression, the _tablematch() function returns a list of table and view
names that match a specified pattern and that are located in the default or specified namespace.
If not preceded by the @ expression, this function returns an integer that represents the number of
matching tables and views found.

Synopsis

[@]_tablematch(<pattern>[, <namespace>[, <option_string>]]

Description

The _tablematch() function matches the specified regular expression to return a list of names
that represent log tables and views of log tables in the default or specified namespace.

NOTE: The _tablematch() function does not return the names of system tables.

The value of <pattern> must:

be a regular expression

Argument Description

<IP_address> The IP address to look up:
• If <IP_address> is an int32 value, the IP address must be in host byte order.
• If <IP_address> is a varchar value, the IP address must be in dotted format.
334 Reporting Guide

Lookup Functions
For example, to represent a SQL string expression that contains a backslash (\), you must
escape the backslash with another backslash, as "\\".

evaluate to a constant string expression

The value must represent the actual names of tables. It cannot be a variable expression or
other text that requires further processing to return the names of the tables. The names must
be represented as strings within quotation marks.

The value for <namespace> defaults to an empty string (""). This value is relative to the default
namespace, which is determined by the --namespace option of the atquery command. The
function looks in the default namespace for table names that match <pattern>; specify a value
for <namespace> to restrict the match to a namespace within the default.

If a value is specified for the namespace option of the _tablematch()function, the specified
namespace is concatenated to the default namespace. The table below presents examples of
how the query engine evaluates the namespace:

NOTE:

When you run the query from HawkEye AP Console, the namespace is the one specified in the report
definition or changed at runtime by the user. For more information, see the Options in Chapter 3,
“Loading, Querying, and Managing the EDW” in the Administration Guide for the atquery utility.

The value for namespace must be a constant string expression.

The value for <option_string> also defaults to an empty string (""). Specify "r" as
<option_string> to search recursively through all subordinate namespaces, beginning with the
namespace stem that concatenates the default namespace and the optional <namespace>
argument. Like the other arguments, the value for the option string must be a constant string
expression.

IMPORTANT: If you specify the third option, you must also specify a value for the
namespace option, even to use the default namespace. In other words, to search

atquery --
namespace

_tablematch(<pat-
tern>
<namespace>)

Namespace Used Example

none specified none specified default as configured for
EDW

default

specified as IT none specified value specified by
atquery
--namespace

IT

none specified specified as firewalls default as configured for
EDW precedes value
specified by
<namespace>

default.firewalls

specified as IT specified as firewalls value specified by
atquery --namespace
precedes value specified
by <namespace>

IT.firewalls
Reporting Guide 335

Chapter 11: SQL Functions
recursively through all subordinate namespaces within the default namespace, you
would specify:

FROM @_tablematch("some_pattern", "", "r")

NOTE: All tables and views with names that match the specified pattern must share a common
schema. The requirements are the same as those for running a subquery: column names and
data types must match.

Arguments

Return Value

If not preceded by the @ expression, the _tablematch() function returns an integer that
represents the number of tables and views that match the regular expression. If preceded by the
@ expression, this function returns a list of the matching table and view names. The returned
names are fully qualified. You can access the list in the same way that you access the lists
returned by list functions.

For more information, see “Working with Lists”, on page 313.

Example

The following SELECT statement uses the _tablematch() function to declare an implicit union of
the tables located in the default namespace and its subordinate namespaces.

SELECT *
FROM @_tablematch("syslog_.*", "", "r")
DURING ALL

;

The match above represents all tables that begin with syslog_, such as syslog_ab, syslog_bc,
and syslog_cd . This pattern follows standard regular expression syntax. If it had been written
without the dot (.) character, it would have returned only names that terminated in the underscore
(_) character.

TIP: Specify ".*" as <pattern> to match all table and view names.

Argument Description

<pattern> A regular expression to match the table names.

<namespace> (Optional.) The namespace in which the tables and views to be
matched are located. The namespace is relative to the default
namespace.
IMPORTANT: This option defaults to an empty string ("") . You must
specify a value for this option if:
• You want to limit the match to a branch within the default namespace. In

this case, specify the full subordinate namespace.

• You specify a value for <option_string>. In this case, you must
specify a value for the namespace argument. If you do not want to specify a
a branch within the default namespace, specify an empty string ("") .

<option_string> (Optional.) Specify "r" to indicate that you want a recursive match,
in which the function looks in <namespace> and all of its
subordinate namespaces.
336 Reporting Guide

Aggregation Functions
The following queries uses the _tablematch() function to indicate how many tables and views
match the search expression.

-- The SELECT below returns a count of values for some_field found in each table
WITH subq1 as (SELECT _fromname() AS src, some_field, count(*) as cnt from

@_tablematch("syslog_.*", "", "r") GROUP BY 1,2 DURING ALL)

-- The SELECT below returns the # of tables that contain a value for 'some_field'
WITH subq2 as (SELECT some_field, count(*) as cnt from subq1 GROUP BY 1)

-- The SELECT below returns the # of times a value for 'some_field'
-- was found out of 'total_tables'

SELECT some_field, cnt, _tablematch("syslog_.*", "", "r") as total_tables
from subq2;

AGGREGATION FUNCTIONS

This section describes functions that perform aggregation on groups of rows.

For more information on the use of aggregation functions, see “GROUP BY Clauses and
Aggregation Queries”, on page 278.

avg()

The avg() aggregate function computes the average of the values in the group.

Synopsis

avg([DISTINCT] <column_expression>)

Function Purpose Page

avg() Computes the average of the values in the group page 33
7

count() Returns the number of rows in the group page 33
8

max() Returns the maximum value in a group page 33
9

min() Returns the minimum value in a group page 34
0

median() Computes the medium of the values in a group page 34
1

sum() Returns the sum of the values in a group page 34
2

_first() Returns the first value in a group page 34
2

_last() Returns the last value in a group page 34
3

_strsum() Returns the concatenation of the string values in a
group

page 34
3
Reporting Guide 337

Chapter 11: SQL Functions
Description

Returns the average of the values in <column_expression> for all rows in a group.

Arguments

Return Value

The return value is the average. The data type of the return value generally matches the data type
of <column_expression>.

Exceptions

The avg() function raises an SQL processing exception under these conditions:

No column expressions are provided.

A column expression has a data type that is not allowed.

Example

The SELECT statement returns the average number of bytes for all the records in the specified
table:

SELECT avg(RespSize)
FROM example_webserv_100
DURING ALL;

count()

The count() aggregate function returns a count of the rows in the group.

Synopsis

count(*)

count(DISTINCT <column_expression>)

Description

Returns the number of items in a group.

Arguments

Argument Description

<column_expression> The target column with values to average. The allowed data
types of the expression are int32, int64, float, and
timestamp.

Argument Description

<column_expression> The target column with values to count. The argument is
ignored unless the DISTINCT modifier keyword is specified
338 Reporting Guide

Aggregation Functions
Return Value

The count() function returns an int64 value representing the number of items in the group.

Examples

The following SELECT statement returns the number of records in the specified table:

SELECT count(*)
FROM example_webserv_100
DURING all;

max()

The _max() aggregate function returns the maximum value in a group.

Synopsis

max(<column_expression>)

Description

The _max() aggregate function returns the maximum value of the given expression for all the
items in a group.

Arguments

Return Values

Generally, the max() aggregate function returns the maximum of all values in the group. The data
type of the return value is the same as the data type of <column_expression>.

The return value of the max() aggregate function has special meaning for these data
types:“Aggregation Functions”, on page 337“Aggregation Functions”, on page 337“Lookup
Functions”, on page 323

Exceptions

The max() aggregate function raises a SQL processing exception if passed less than one
expression.

Argument Description

<column_expression> The target column with values in which to find the maximum
value.

Data type of
<column_expression>

Meaning of the Return Value

bool Returns a bool representing the logical OR of all the values

timestamp Returns a timestamp representing the date and time-of-day
furthest in the future from midnight, January 1, 1970

varchar Returns a varchar containing the maximum
Reporting Guide 339

Chapter 11: SQL Functions
Example

The following query returns the latest record for all the records in the example_webserv_100
table:

SELECT max(ts)
FROM example_webserv_100
DURING all;

min()

The _min() aggregate function returns the minimum value in a group.

Synopsis

min(<column_expression>)

Description

The min() aggregate function returns the minimum value of the given expression for all the items
in a group.

Arguments

Return Values

Generally, the min() aggregate function returns the minimum value of all values in the group. The
data type of the return value is the same as the data type of <column_expression>.

The return value of the max() aggregate function has special meaning for these data types:

Exceptions

The min() aggregate function raises a SQL processing exception under any of these conditions:

No expressions are passed as arguments.

The data type of <column_expression> is bool or varchar.

Argument Description

<column_expression> The target column with values in which to find the minimum
value; data type is bool or varchar.

Data type of
<column_expression>

Meaning of the Return Value

timestamp Returns a timestamp representing the date and time-of-day
closest to midnight, January 1, 1970.
340 Reporting Guide

Aggregation Functions
Example

The following query returns the earliest record for all the records in the example_webserv_100
table:

SELECT min(ts)
FROM example_webserv_100
DURING all;

median()

The _median() aggregate function returns the median value in a group.

Synopsis

median(<column_expression>)

Description

The median() aggregate function returns the median value of the given expression for all the
items in a group.

Arguments

Return Value

The return value is the median of the items in the group. The data type of the return value
generally matches the data type of <column_expression>. If the number of items in the group is
even, then median returns the arithmetic means of <column_expression> for the two middle
items.

Exceptions

The median() function raises an SQL processing exception under these conditions:

No column expressions are provided.

A column expression has a data type that is not allowed.

Example

The SELECT statement returns the median number of bytes for all the records in the specified
table:

SELECT median(RespSize)
FROM example_webserv_100
DURING ALL;

Argument Description

<column_expression> The target column with values to calculate the median. The
allowed data types of the expression are int32, int64,
float, and timestamp.
Reporting Guide 341

Chapter 11: SQL Functions
sum()

The _sum() aggregate functions return the sum of values in a group.

Synopsis

sum(<column_expression>)

Description

The sum() aggregate returns the sum of the given expression for all the items in a group.

Arguments

Return Values

The return value of the sum() aggregate function has special meaning, depending on the data
type of <column_expression>:

Exceptions

The sum() aggregate function raises a SQL processing exception under any of these conditions:

No expressions are passed as arguments.

The data type of <column_expression> is varchar.

Examples

The following query returns the total number of bytes returned for all the records in the
example_webserv_100 table:

SELECT sum(RespSize)
FROM example_webserv_100
DURING all;

_first()

The _first() aggregate function returns the first value in a group.

Argument Description

<column_expression> The target column with numeric values to sum; data type is timestamp or
varchar.

Data type of
<column_expression>

Meaning of the Return Value

bool Returns a bool returns false if all the values in the group are
false; otherwise it returns true.

int32
int64

Returns an int64 containing the sum of all the values in the group.

float Returns a float containing the sum of all the values in the group.
342 Reporting Guide

Aggregation Functions
Synopsis

_first(<column_expression>)

Description

Returns the first value of the given expression from the first row in a group.

Generally, you use the _first() function in conjunction with an ORDER BY clause.

Arguments

Return Value

The _first() function returns the value of <column_expression> from the first row in the group.

_last()

The _last() aggregate function returns the last value in a group.

Synopsis

_last(<column_expression>)

Description

Returns the value of the given expression from the last row in a group.

Generally, you use the _last() function in conjunction with an ORDER BY clause.

Arguments

Return Value

The _last() function returns the value of <column_expression> from the last row in the group.

_strsum()

The _strsum() aggregate function returns the string concatenation of all the values in a group.

Synopsis

_strsum(varchar_column_expression>)

Argument Description

<column_expression> The target column in the first row in the group from which
the return value is taken.

Argument Description

<column_expression> The target column in the last row in the group from which
the return value is taken.
Reporting Guide 343

Chapter 11: SQL Functions
Description

The _strsum() aggregate function returns the string concatenation of the given expression for all
the items in a group.

Arguments

Return values

The _strsum() aggregate function returns a varchar containing the string concatenation of all
the values in the group.

STATISTICAL AGGREGATE FUNCTIONS

This section describes functions that perform statistical calculations on the values of a named
column. If the query contains a "group by" clause, the calculation is made for each group of rows
returned by the query; otherwise, the calculation is performed on all rows returned by the query.

var_pop()

Returns the population variance of the values in the named column.

Synopsis

var_pop(column_expression)

Description

The var_pop() function returns the population variance of the values in the named column for
each grouping of rows that results from a "group by" clause, or for all the rows if there is no
"group by" clause.

Argument Description

<varchar_column_expression> Target column expression

Function Purpose Page

var_pop() Returns the population variance of the values in the
named column.

page 34
4

stddev_pop() Returns the population standard deviation for the
values of named column.

page 34
5

var_samp() Returns the sample variance of the named column. page 34
6

stddev_samp() Returns the sample standard deviation for the values of
named column.

page 34
7

variance() Alias for the var_samp() function. page 34
8

stddev() Alias for the stddev_samp() function. page 34
8
344 Reporting Guide

Statistical Aggregate Functions
POPULATION VARIANCE CALCULATION

The population variance of N numbers {x1, x2, x3, ..., xN} is defined as the sum of the squares of
the difference between each number and the mean of the numbers, divided by N, as shown in the
table below:

Arguments

Return Value

The function returns the population variance as a FLOAT datatype.

stddev_pop()

Returns the population standard deviation for the values of named column.

Synopsis

stddev_pop(column_expression)

Description

The stddev_pop() function returns the population standard deviation of the values in the named
column for each grouping of rows that results from a "group by" clause, or for all the rows if there
is no "group by" clause.

Column
values

Mean Differ-
ence from

mean

Square of
differ-

ence from
mean

10 20 -10 100

20 20 0 0

30 20 10 100

25 20 5 25

15 20 -5 25

Sum of the squares of differences 250

Population variance 50

Argument Description

column_expression A column expression that evaluates to one of the following
datatypes:
• int32

• int64

• float

• timestamp (calculations are made using the number of seconds
since epoch)
Reporting Guide 345

Chapter 11: SQL Functions
POPULATION STANDARD DEVIATION CALCULATION

The population standard deviation of a group of numbers is the positive square root of the
population variance (See “var_pop()”, on page 344. In the example below, the population
variance is 50 and the population standard deviation is 7.07106, the square root of 50.

Arguments

Return values

The function returns the population standard deviation as a FLOAT datatype.

var_samp()

Returns the sample variance of the named column.

Synopsis

var_samp(column_expression)

Description

The var_samp() function returns the sample variance of the values in the named column for each
grouping of rows that results from a "group by" clause, or for all the rows if there is no "group by"
clause.

Column
values

Mean Differ-
ence from

mean

Square of
differ-

ence from
mean

10 20 -10 100

20 20 0 0

30 20 10 100

25 20 5 25

15 20 -5 25

Sum of the squares of differences 250

Population variance 50

Population standard deviation 7.071067
8

Argument Description

column_expression A column expression that evaluates to one of the following
datatypes:
• int32

• int64

• float

• timestamp (calculations are made using the number of seconds
since epoch)
346 Reporting Guide

Statistical Aggregate Functions
SAMPLE VARIANCE CALCULATION

The sample variance of N numbers {x1, x2, x3, ..., xN} is defined as the sum of the squares of the
difference between each number and the mean of the numbers, divided by N-1, as shown in the
table below:

Arguments

Return Value

The function returns the sample variance as a FLOAT datatype.

stddev_samp()

Returns the sample standard deviation for the values of named column.

Synopsis

stddev_samp(column_expression)

Description

The stddev_samp() function returns the sample standard deviation of the values in the named
column for each grouping of rows that results from a "group by" clause, or for all the rows if there
is no "group by" clause.

Column
values

Mean Differ-
ence from

mean

Square of
differ-

ence from
mean

10 20 -10 100

20 20 0 0

30 20 10 100

25 20 5 25

15 20 -5 25

Sum of the squares of differences 250

Sample variance 62.5

Argument Description

column_expression A column expression that evaluates to one of the following
datatypes:
• int32

• int64

• float

• timestamp (calculations are made using the number of seconds
since epoch)
Reporting Guide 347

Chapter 11: SQL Functions
SAMPLE STANDARD DEVIATION CALCULATION

The sample standard deviation of a group of numbers is the positive square root of the sample
variance (See “var_samp()”, on page 346). In the example below, the sample variance is 62.5 and
the sample standard deviation is 7.9056, the square root of 62.5.

Arguments

Return values

The function returns the sample standard deviation as a FLOAT datatype.

variance()

The variance() function is an alias for the var_samp() function. The functions may be used
interchangeably. For details, see “var_samp()”, on page 346.

stddev()

The stddev() function is an alias for the stddev_samp() function The functions may be used
interchangeably. For details, see “stddev_samp()”, on page 347.

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

This section describes functions that perform logarithmic and exponential calculations.

Column
values

Mean Differ-
ence from

mean

Square of
differ-

ence from
mean

10 20 -10 100

20 20 0 0

30 20 10 100

25 20 5 25

15 20 -5 25

Sum of the squares of differences 250

Sample variance 62.5

Sample standard deviation 7.9056

Argument Description

column_expression A column expression that evaluates to one of the following
datatypes:
• int32

• int64

• float

• timestamp (calculations are made using the number of seconds
since epoch)
348 Reporting Guide

Logarithmic and Exponential Functions
_log()

The _log() function returns the natural logarithm of a value.

Synopsis

_log(<numeric_expression>)

Description

The _log() function returns the natural logarithm of <numeric_expression>.

Arguments

Return Value

The data type of the return value from the _log() function is float.

_log10()

The _log10() function returns the base 10 logarithm of a value.

Synopsis

_log10(<numeric_expression>)

Description

The _log10() function returns the base 10 logarithm of <numeric_expression>.

Arguments

Function Purpose Page

_log() Returns the natural logarithm of a value page 34
9

_log10() Returns the base 10 logarithm of a value page 34
9

_pow() Returns a power of a value page 35
0

_exp() Returns a power of e page 35
0

Argument Description

<numeric_expression> An expression that evaluates to an int32, int64, or float value.

Argument Description

<numeric_expression> An expression that evaluates to an int32, int64, or float value.
Reporting Guide 349

Chapter 11: SQL Functions
Return Value

The data type of the return value from the _log10() function is float.

_pow()

The _pow() function returns the power of a value.

Synopsis

_pow(<numeric_expression>, <power>)

Description

The _pow() function returns the <power> of <numeric_expression>.

Arguments

Return Value

The data type of the return value from the _pow() function is float.

_exp()

The _exp() function returns a power of e.

Synopsis

_exp(<power>)

Description

The _exp() function returns e raised to the power specified by <power>.

Arguments

Return Value

The data type of the return value from the _exp() function is float.

Argument Description

<numeric_expression> An expression that evaluates to an int32, int64, or float value.
This value is the base in the computation.

<power> An expression that evaluates to an int32, int64, or float value.
This value is the exponent in the computation.

Argument Description

<power> An expression that evaluates to an int32, int64, or float value.
This value is the exponent in the computation; e is the base.
350 Reporting Guide

Numeric Rounding Functions
NUMERIC ROUNDING FUNCTIONS

This section describes functions that perform numeric rounding.

_abs()

The _abs() function computes the absolute value of an expression.

Synopsis

_abs(<expression>)

Description

The _abs() function computes the absolute value of <expression>.

Arguments

Return Value

The _abs() function returns the absolute value of <expression>, in the same data type.

Exceptions

The _abs() function raises an SQL processing exception if the data type of <expression> is not
int32, int64, or float.

_ceil()

The _ceil() function rounds a numeric value up to the nearest integer.

Synopsis

_ceil(<expression>)

Function Purpose Page

_abs() Computes the absolute value of an expression page 35
1

_ceil() Rounds a numeric value up to the nearest integer value page 35
1

_floor() Rounds a numeric value down to the nearest integer value page 35
2

_round() Performs fractional rounding to a specified precision page 35
2

Argument Description

<expression> An expression that evaluates to an int32, int64, or float value.
Reporting Guide 351

Chapter 11: SQL Functions
Description

The _ceil() function rounds <expression> up to the nearest integer.

Arguments

Return Value

If the data type of <expression> is float, the _ceil() function returns a float value that
rounds <expression> up to the nearest integral value. If the data type is int32 or int64, the
_ceil() function returns <expression> without altering its value.

_floor()

The _floor() function rounds a numeric value down to the nearest integer.

Synopsis

_floor(<expression>)

Description

The _floor() function rounds <expression> down to the nearest integer.

Arguments

Return Value

If the data type of <expression> is a float value, The _floor() function returns a float value
that rounds that <expression> down to the nearest integral value. If the data type is int32 or
int64, the floor() function returns <expression> without altering its value.

Example

The following query returns the integral value of the average size of the requests in the log table:

SELECT _floor(avg(RespSize))
FROM example_webserv_100
DURING ALL;

_round()

The _round() function performs rounding to a specified decimal or whole-number precision.

Argument Description

<expression> An expression that evaluates to an int32, int64, or float value.

Argument Description

<expression> An expression that evaluates to an int32, int64, or float value.
352 Reporting Guide

String Functions
Synopsis

_round(<expression> [,<digits>])

Description

The _round() function rounds <expression> to the decimal or whole-number precision
specified by <digits>. The function rounds to the nearest integer value when <digits> is
omitted.

Arguments

Return Value

If the data type of <expression> is a float value, the _round() function returns a float the
closest to the 10^(-<digits>) value. If the data type is int32 or int64, the function returns its
argument in the same data type respectively.

Exceptions

The _round() function raises an SQL processing exception if the data type of <expression> is
not int32, int64, or float.

STRING FUNCTIONS

This section describes functions that operate on string values.

Argument Description

<expression> An expression that evaluates to an int32, int64, or float value.

<digits> Optional. An int32 value in the range -16 through 16. Positive
numbers specify decimal precision. Negative numbers specify
whole-number precision. The value 0 specifies that rounding does
not occur. If this parameters is omitted, rounding occurs to the
nearest integer.

Function Purpose Page

_strlowercase(), _lc() Converts text to all lower-case letters page 35
4

_struppercase(), _uc() Converts text to all upper-case letters page 35
5

_strmd5(), _md5() Computes the MD5 hash value for a large block of text as a
varchar

page 35
5

_strmd5_64(),
_md5_64()

Computes the MD5 hash value for a large block of text as an int64 page 35
6

_strlen() Counts the number of characters in a varchar value page 35
7

_strstr() Determines if a text value can be found as part of another text value page 35
8
Reporting Guide 353

Chapter 11: SQL Functions
_strlowercase(), _lc()

The _strlowercase() function converts text to all lower-case letters.

Synopsis

_strlowercase(<string>)

_lc(<string>)

Description

The _strlowercase() function converts each letter in <string> to lower case, if possible.

The _lc() function is an alias for strlowercase().

_strmatch() Returns a portion of text that matches a regular expression page 35
7

_strmatchlist() Parses portions of text that match a regular expression into a list
variable

page 35
9

_strsplit() Parses text into a list of text values using a single separation
character

page 36
0

_strsplitxsv() Parses text into a list of text values using complex separation logic page 36
1

_strleft() Returns a specified number of leading characters from text page 36
1

_strright() Returns a specified number of trailing characters from text page 36
2

_strmiddle(), substr() Returns all text from a starting character for a specified length page 36
2

_strrepeat() Returns a varchar expression repeated a specified number of times page 36
3

_strlpad() Prepends a space or the value of an optional varchar expression to
a varchar expression up to the length specified in an int32
expression.

page 36
4

_strrpad() Appends a space or the value of an optional varchar expression to
the varchar expression up to the length specified in an int32
expression.

page 36
6

_strtrim() Returns all but a specified number of leading and trailing characters
from text

page 36
8

_strlink() Creates an HTML anchor tag page 36
9

_strcat() Concatenates a list of text arguments page 37
1

_strjoin() Concatenates a list of text arguments with a separator between each
value

page 37
1

_strformat(), _sprintf() Formats a string from a list of substitution values page 37
2

Function Purpose Page
354 Reporting Guide

String Functions
Arguments

Return Value

The _strlowercase() function returns a varchar value with the result of the conversion.

Examples

The following query returns all the values of the URL column of the example_webserv_100 table
in lower case.

SELECT _strlowercase(Url)
FROM example_webserv_100
DURING ALL;

_struppercase(), _uc()

The _struppercase() function converts text to all upper-case letters.

Synopsis

_struppercase(<string>)

_uc(<string>)

 Description

The _struppercase() function converts each letter in <string> to upper case, if possible.

The _uc() function is an alias for struppercase().

Arguments

Return Value

The _struppercase() function returns a varchar value that contains the result of the conversion.

_strmd5(), _md5()

The _strmd5() function computes the MD5 hash value for a large block of text.

NOTE: These functions are not recommended for cryptographic use.

Argument Description

<string> A varchar value containing the string to convert.

Argument Description

<string> A varchar value containing the string to convert.
Reporting Guide 355

Chapter 11: SQL Functions
Synopsis

_strmd5(<string>)

_md5(<string>)

Description

The _strmd5() function computes the MD5 hash value for a large block of text and returns the
hash value as a varchar value. MD5 hash values are computed by an algorithm that produces a
128-big message digest, or “signature” for a text block of arbitrary size. Generally, one assumes
that MD5 hash values are unique unless text blocks are identical.

The _md5_64()function is an alias for _strmd5_64().

Arguments

Return Value

The _strmd5() function returns a varchar value that contains the hash value.

Exceptions

The _strmd5() function raises an SQL processing exception if the data type of <string> is not
varchar.

_strmd5_64(), _md5_64()

The _strmd5_64() function computes the MD5 hash value for a large block of text.

NOTE: These functions are not recommended for cryptographic use.

Synopsis

_strmd5_64(<string>)

_md5_64(<string>)

Description

The _strmd5_64() function computes the MD5 hash value for a large block of text and returns
the hash value as an int64 value. MD5 hash values are computed by an algorithm that produces
a 128-big message digest, or “signature” for a text block of arbitrary size. Generally, one assumes
that MD5 hash values are unique unless text blocks are identical.

The _md5_64()function is an alias for _strmd5_64().

Argument Description

<string> A varchar value containing the text block to hash.
356 Reporting Guide

String Functions
Arguments

Return Value

The _strmd5_64() function returns an int64 value that contains the first 8 bytes of the 128-bit
hash value.

Example

The following query returns the MD5 hash value of the URL column for each record in the
example_webserv_100 table.

SELECT _md5(Url)
FROM example_webserv_100
DURING ALL;

_strlen()

The _strlen() function counts the number of characters in a varchar value.

Synopsis

_strlen(<string>)

Description

The _strlen() function counts the number of characters in <string>.

Arguments

Return Value

The _strlen() function counts the number of characters in <string> up to the first 0x0
character.

Examples

The following query returns the length of the largest URL in the example_webserv_100 table:

SELECT max(_strlen(Url))
FROM example_webserv_100
DURING ALL;

Argument Description

<string> A varchar value containing the text block to hash.

Argument Description

<string> A varchar value.
Reporting Guide 357

Chapter 11: SQL Functions
_strstr()

Synopsis

_strstr(<string>, <string_to_find>)

Description

The _strstr() function searches <string> for the first occurrence of <string_to_find>.

Arguments

Return Value

The data type of the return value from the _strstr() function is int32. The return value contains
the 0-based offset of the beginning <string_to_find> within <string>. The return value is -
1 if <string_to_find> is not found within <string>.

Examples

The following query returns the number of records in the table where the UserAgent column
contains the string 'Windows'.

SELECT count(*)
FROM example_webserv_100
WHERE _strstr(UserAgent,'Windows') <> -1
DURING ALL;

The following query returns the number of records in the table where the Url column begins with
the sequence '/images':

SELECT count(*)
FROM example_webserv_100
WHERE _strstr(Url,'/images') = 0
DURING ALL;

_strmatch()

Synopsis

_strmatch(<string>, <pattern>, <default_value>)

Description

The _strmatch() function searches <string> for a sequence of characters that matches
<pattern>, which you write as a Perl regular expression. The function returns the matching
sequence of characters if a match is found; otherwise, the function returns <default_value>.

Argument Description

<string> A varchar value that contains the string to search

<string_to_find> A varchar value that contains the string to find
358 Reporting Guide

String Functions
Arguments

Return Value

The _strmatch() function returns a varchar that corresponds to the first parenthesized
elements that matched the string. The function returns <default_value> if no match is found.

Exceptions

The _strmatch() function raises an SQL processing exception when the value of <pattern> is
not a valid regular expression.

Examples

The following query returns a portion of the UserAgent column of each row in the
example_webserv_100 table with the string 'MSIE'. If the UserAgent column does not contain the
value, the default value of 'MSIE 5.0' is used.

SELECT _strmatch(UserAgent, '(MSIE [^]*)', 'MSIE 5.0')
FROM example_webserv_100
DURING ALL;

The following query uses the _strmatch() function in Boolean expression to return rows that
contain ’eclipse’ anywhere within the referrer column:

SELECT *
FROM mytable
WHERE _strmatch(referrer, ’*.eclipse.*’, ’-’) <> ’-’
DURING ALL

;

_strmatchlist()

Synopsis

_strmatchlist(<string>, <pattern>[, <fallback>])

Description

The _strmatchlist() function attempts to match the specified <string> against the specified
<pattern> and makes the matching portions of the string available as an INTO variable.

For more information, see “INTO Keyword”, on page 315.

Argument Description

<string> A varchar value that contains the string to search

<pattern> A varchar value that contains the matching pattern, expressed as
a Perl regular expression
NOTE: When a pattern contains a backslash (\) character, you
must escape it with a second backslash character; for example:
\\d.

<default_value> A varchar value that contains the string to return if the match fails
Reporting Guide 359

Chapter 11: SQL Functions
Arguments

Return Values

The return value from the _strmatchlist() function is an int32 that corresponds to the number
of parenthesized elements in <pattern> that find matches in <string>. If there are no
parentheses used in <pattern>, _strmatchlist() returns 1 if there is a match and 0 if the
pattern does not match.

Also, the _strmatchlist() makes available the actual matches as list elements. You can return
the list as a list variable in place of the return value, or you can return it as an INTO variable. If
there are no parenthesized elements used in <pattern>, the entire matched substring is returned
as the first list element.

For more information on accessing return lists in place of return values, see “Multiple Values as
Lists”, on page 313.

Example

Here is an example of using INTO to capture multiple matches from _strmatchlist():

SELECT match[1], match[2]
FROM example_webserv_100
WHERE _strmatchlist(UserAgent, '([^(]*)[(]([^)]+)') INTO match
DURING time('Feb 01 00:00:00 2002'), time('Mar 31 23:59:59 2002');

_strsplit()

Synopsis

_strsplit(<separator_string>, <expression>[, <throw>])

Description

The _strsplit() function parses <expression> into a list of strings, with the separator
between the elements specified by <separator_string>.

The return value of _strsplit() is the number of strings parsed from <expression>. To
access the list, use INTO or @. For more information about lists, see “List Functions”, on page
321.

Arguments

Argument Description

<string> A varchar value that contains the string to match

<pattern> A varchar value that contains the matching pattern, expresses as
a Perl regular expression

<fallback> Optional. A varchar value that contains a string to match against
<pattern> if <string> fails to match.

Argument Description

<separator_string> A varchar value that specifies the parsing separator.
360 Reporting Guide

String Functions
Return Values

The _strsplit() function returns the number of strings parsed from <expression>.

Also, the _strsplit() function makes available the actual matches as list elements. You can
return the list as a list variable in place of the return value, or you can return the list as an INTO
variable.

For more information on accessing return lists in place of return values, see “Multiple Values as
Lists”, on page 313.

_strsplitxsv()

Synopsis

_strsplitxsv(<parsing_options>, <expression>[, <throw>])

Description

The _strsplitxsv() function is similar to _strsplit(), but instead of using a literal string to
specify the separator, it allows you to specify more complex parsing options, such as quoting and
escapification. The <parsing_options> argument contains a semicolon-delimited list of options.

For details about the permitted values in <parsing_options>, see “Basic Parsing Options”, on
page 326.

Return Values

The _strsplitxsv() function returns the number of strings parsed from <expression>.

Also, the _strsplitxsv() function makes available the parsed strings as list elements. You can
return the list as a list variable in place of the return value, or you can return the list as an INTO
variable.

For more information on accessing return lists in place of return values, see “Multiple Values as
Lists”, on page 313.

_strleft()

Synopsis

_strleft(<string>, <count>)

Description

The _strleft() function returns the leading <count> of characters from <string>.

<expression> A varchar value that contains the string to parse

<throw> Optional. A value of any data type that will cause an exception to
be thrown with an explanation when <splitstring> is rejected

Argument Description
Reporting Guide 361

Chapter 11: SQL Functions
Arguments

Return Value

The _strleft() function returns a varchar value with the result.

_strright()

Synopsis

_strright(<string>, <count>)

Description

The _strright() function returns the trailing <count> of characters from <string>.

Arguments

Return Value

The _strright() function returns a varchar value with the result.

_strmiddle(), substr()

Synopsis

_strmiddle(<string>, <offset>, <length>)

_substr(<string>, <offset>, <length>)

Description

The _strmiddle() function extracts a substring that starts at <offset> in <string> and extends
the specified <length>.

The _substr() function is an alias for _strmiddle().

Argument Description

<string> A varchar value that contains the string to return

<count> A non-negative int32 value that specifies the number of
characters to return, starting from the left of <string>

Argument Description

<string> A varchar value that contains the string to return

<count> A non-negative int32 value that specifies the number of
characters to return, starting from the right of <string>
362 Reporting Guide

String Functions
Arguments

Return Value

The _strmiddle() function returns a varchar value with the result.

_strrepeat()

Synopsis

_strrepeat(<varchar_expression>, <int32_expression>)

Description

The _strrepeat() function repeats the varchar expression as many times as the value specified
in the integer expression.

Arguments

Return Value

The _strrepeat() function returns a varchar value that repeats the varchar-expression value
as many times as specified by the int32 value.

Exceptions

The _strrepeat() function raises a SQL processing exception when the data type of
<varchar_expression> is not varchar and the data type of <int32_expression> is not int32.

Argument Description

<string> A varchar value that contains the string to return

<offset> A non-negative int32 value that specifies the position of the first
character to return.

<length> A non-negative int32 value that specifies the number of
characters to return.

Argument Description

<varchar_expression> An expression that evaluates to a varchar value; can be a
column value, any general expression that includes column
values, and/or constants, provided that the data type of the
expression evaluates to varchar.

<int32_expression> An expression that evaluates to a non-negative int32 value that
specifies the number of times to repeat the value in the first
argument; can be a column value, any general expression that
includes column values, and/or constants, provided that the data
type of the expression evaluates to int32.
NOTE: If the integer is negative, the EDW treats the negative value
as zero (0) and returns an empty varchar value.
Reporting Guide 363

Chapter 11: SQL Functions
Examples

The following query repeats "Page" four times in each row:

SELECT _strrepeat('Page', 4)
FROM someTable
DURING ALL;

The query above returns: PagePagePagePage.

The following query repeats the value of the OddChar column as many times as specified by the
value of the Digit column:

SELECT top 1 OddChar, Digit, _strrepeat(OddChar, Digit)
FROM analyzer_types
DURING ALL;

The graphic below illustrates the results.

The following query appends a trailing space to the value of the OddChar column, which it repeats
as many times as specified by the value of the Digit column plus 1:

SELECT top 1 _strrepeat(OddChar+" ", Digit+ _int32(1))
FROM analyzer_types
DURING ALL;

The graphic below illustrates the results.

To display the full results of the _strrepeat() function, the query above includes only the
_strrepeat() function in the SELECT clause. Therefore, it does not return values from the
OddChar and Digit columns.

_strlpad()

Synopsis

_strlpad(<varchar_expression>, <int32_expression>
[,<optional_varchar_expression>])
364 Reporting Guide

String Functions
Description

The _strlpad() function prepends the value of the optional varchar expression to the varchar
expression until the result value becomes the length specified in the int32 expression. If the length
of the result varchar expression is longer than the specified length, the function truncates the text
from the right. If no optional varchar expression is included, the function prepends a space.

Arguments

Return Value

The _strlpad() function returns a varchar value that includes the value of the varchar
expression prepended with the value of the optional varchar expression, or a space if the optional
expression is missing, up to the length specified in the int32 expression. If the length of this result
varchar expression is longer than the specified length, the function truncates the text from the
right.

Exceptions

The _strlpad() function raises a SQL processing exception when the data type of
<varchar_expression> or <optional_varchar_expression> is not varchar and the data type
of <int32_expression> is not int32.

Examples

The following query returns "xyxhi":

SELECT _strlpad('hi', 5, 'xy')
FROM someTable
DURING ALL;

The following query prepends the value of the optional expression to the value in the SrcIP
column until the result value becomes the length specified in the int32 expression:

SELECT top 5 SrcIP, _strlpad(SrcIP,16,"src: ")
FROM analyzer_types
DURING ALL;

Argument Description

<varchar_expression> An expression that evaluates to a varchar value; can be a
column value, any general expression that includes column
values, and/or constants, provided that the data type of the
expression evaluates to varchar.

<int32_expression> An expression that evaluates to a non-negative int32 value that
specifies the length of the returned value; can be a column value,
any general expression that includes column values, and/or
constants, provided that the data type of the expression evaluates
to int32.
NOTE: If the integer is negative, the EDW treats the negative value
as zero (0) and returns an empty varchar value.

<optional_varchar_expr
ession>

An expression that evaluates to a varchar value; can be a
column value, any general expression that includes column
values, and/or constants, provided that the data type of the
expression evaluates to varchar.
Reporting Guide 365

Chapter 11: SQL Functions
The graphic below illustrates the results.

NOTE: In the results above, the fourth row does not include the space before the IP address
because this address is longer than the others. If you modify the function to return 18 characters
instead of 16, four of the five rows returned repeat the first two characters of the optional varchar
expression whereas the row with the longer value repeats only the first character, as shown
below.

If you modify the function to return only 3 characters, which is shorter than the values in the SrcIP
column, no additional characters are prepended to the result. Instead, the query truncates the
column values from the right to 3 characters, as shown below.

_strrpad()

Synopsis

_strrpad(<varchar_expression>, <int32_expression>
[,<optional_varchar_expression>])
366 Reporting Guide

String Functions
Description

The _strrpad() function appends the value of the optional varchar expression to the varchar
expression until the result value becomes the length specified in the int32 expression. If the length
of the result varchar expression is longer than the specified length, the function truncates the text
from the right. If there is no optional varchar expression, the function appends a space.

Arguments

Return Value

The _strrpad() function returns a varchar value that includes the value of the varchar
expression appended with the value of the optional varchar expression, or a space if the optional
expression is missing, up to the length specified in the int32 expression. If the length of this result
varchar expression is longer than the specified length, the function truncates the text.

Exceptions

The _strrpad() function raises a SQL processing exception when the data type of
<varchar_expression> or <optional_varchar_expression> is not varchar and the data type
of <int32_expression> is not int32.

Examples

The following query returns "hixyx":

SELECT _strrpad('hi', 5, 'xy')
FROM someTable
DURING ALL;

The following query appends the value of the optional expression to the value in the SrcIP
column until the result value becomes the length specified in the int32 expression:

SELECT top 5 SrcIP, _strrpad(SrcIP,18,"src: ")
FROM analyzer_types
DURING ALL;

The graphic below illustrates the results.

Argument Description

<varchar_expression> An expression that evaluates to a varchar value; can be a
column value, any general expression that includes column
values, and/or constants, provided that the data type of the
expression evaluates to varchar.

<int32_expression> An expression that evaluates to a non-negative int32 value that
specifies the length of the returned value; can be a column value,
any general expression that includes column values, and/or
constants, provided that the data type of the expression evaluates
to int32.
NOTE: If the integer is negative, the EDW treats the negative value
as zero (0) and returns an empty varchar value.

<optional_varchar_expr
ession>

An expression that evaluates to a varchar value; can be a
column value, any general expression that includes column
values, and/or constants, provided that the data type of the
expression evaluates to varchar.
Reporting Guide 367

Chapter 11: SQL Functions
NOTE: In the results above, the first row appends one fewer character from the optional
expression because this IP address is longer than the others. If you modify the query so that it
does not include an optional expression, the results append spaces after the IP address, as
shown below.

If you modify the function to return only 3 characters, which is shorter than the values in the SrcIP
column, no additional characters are appended to the result. Instead, the query truncates the
column values from the right to 3 characters, as shown below.

_strtrim()

Synopsis

_strtrim(<string>, <left>[, <right>])

Description

The _strtrim() function creates a substring by truncating the <left> number of characters from
the left side of <string> and the <right> number of characters from the right side.
368 Reporting Guide

String Functions
Arguments

Return Value

The _strtrim() function returns a varchar value containing the result.

Examples

The following query returns all the values of the Referrer column of the table with any slashes
removed from the left side:

SELECT _strtrim(Referrer, '/')
FROM example_webserv_100
DURING ALL;

The following query returns all the values of the Referrer column of the table with the trailing
character removed:

SELECT _strtrim(Referrer, 0, 1)
FROM example_webserv_100
DURING ALL;

The following query returns all the values of the Url column of the table with the leading 5
characters removed, if they begin with 'http:':

SELECT _strtrim(Url, _if(_strstr(Url,'http:')=0,5,0))
FROM example_webserv_100
DURING ALL;

_strlink()

Synopsis

_strlink(<url>, <text>[, <new_window>])

Argument Description

<string> A varchar value that contains the string to return

<left> A non-negative int32 value that specifies the number of
characters on the left of <string> to remove.
– or –
A varchar value that identifies the leading characters to remove.
The function scans the left portion of <string> until it finds a
character not in <left> and then removes the characters up to
that point

<right> Optional. A non-negative int32 value that specifies the number of
characters on the right of <string> to remove.
– or –
Optional. A varchar value that identifies the trailing characters to
remove. The function scans backwards through the right portion of
<string> until it finds a character not in <right> and then
removes the characters up to that point.
Reporting Guide 369

Chapter 11: SQL Functions
Description

The _strlink() function returns an HTML anchor tag suitable for use in HTML documents. The
returned tag contains <text> as the link text to display, with <url> as the HREF attribute.

This function is useful for query results you intend to display in your own HTML or other third-
party application.

NOTE: Do not use this function to display an active link in a HawkEye AP Console report.
Although HawkEye AP Console provides the special URL data type from a dropdown in the
Columns tab, the URL data type does not display the text as clickable links; instead it sorts the
text as URLs.

Arguments

Return Value

The _strlink() function returns a varchar value containing a valid HTML anchor tag.

Examples

Assume an event-log table contains a varchar url column, with values similar to the following:

Url

http://www.acme.com

The following query returns a list of HTML anchor tags for the URLs contained in the Url column
of the example_webserv_100 table:

SELECT _strlink(Url, 'Click Here') AS anchor_tag
FROM example_webserv_100
DURING ALL;

The output looks similar to the following:

anchor_tag

Click Here

The following query returns a list of HTML anchor tags encoded so that the link destination is
displayed in a new browser window instead of replacing the page in the current browser window:

SELECT _strlink(Url, 'Click Here', 1) AS anchor_tag
FROM example_webserv_100
DURING ALL;

Argument Description

<url> A varchar value that contains the URL referenced by the href
attribute of the link

<text> A varchar value that contains the text content of the link

<new_window> Optional. Value of any data type, which if equal to 1, indicates that
the link should display the target URL in a new browser window.
370 Reporting Guide

String Functions
The output looks similar to the following:

anchor_tag

Click Here

_strcat()

Synopsis

_strcat (<argument>[, <argument>[...]])

Description

The _strcat() function concatenates the string representations of the <argument> values.

Arguments

NOTE: The _strcat() function may be passed list variables as arguments. For more information,
see “Working with Lists”, on page 313.

Return Value

The _strcat() function returns a varchar value containing the result.

Example

For rows with Url="/www.acme.com" and ClientDNS = "66.127.84.10", the following query will
return the value "http://www.acme.com?dns=66.127.84.10".

SELECT _strcat('http:/', Url, '?dns=', ClientDNS)
FROM example_webserv_100
DURING ALL;

_strjoin()

Synopsis

_strjoin(<separator_string>, <argument>[, <argument>[...]])

Description

The _strjoin() function concatenates the string representations of the <argument> values, but
separates each string with <separator_string>. This function is similar to the Perl function of
the same name.

Argument Description

<argument> A value of any data type. The function converts the value to a varchar
before concatenating.
Reporting Guide 371

Chapter 11: SQL Functions
Arguments

NOTE: The _strjoin() function may be passed list variables as arguments. For more
information, see “Working with Lists”, on page 313.

Return Value

The _strjoin() function returns a varchar value containing the result.

Example

The following query will return the value “a,b,c,d”

SELECT TOP 1 _strjoin(",", "a", "b", "c", "d")
FROM example_webserv_100
DURING ALL;

_strformat(), _sprintf()

Synopsis

_strformat(<format_string>, <argument>[, <argument>[...]])

_sprintf(<format_string>, <argument>[, <argument>[...]])

Description

The _strformat() function creates a string by replacing the format specifiers in
<format_string> with the string representations of the corresponding arguments. A format
specifier is a special sequence of characters that is replaced by the varchar value of a
corresponding <argument>.

For more information, see “Format Specifiers”, on page 373.

The _sprintf() function is an alias for _strformat().

Arguments

Argument Description

<separator_string> A varchar value that contains the characters that separate the
concatenated string values. The value must be constant; that is, it
cannot vary from row to row.

<argument> A value of any data type. The function converts the value to a varchar
before concatenating.

Argument Description

<format_string> A varchar value that specifies the format of the output.

<argument> A value of any data type to use in place of the corresponding format
specifier in <format_string>. The data type must match the data
type its corresponding format specifier.
372 Reporting Guide

String Functions
Format Specifiers

Use format specifiers in the <format_string> argument as placeholders for values that you
provide as additional arguments. Format specifiers have the following syntax:

%[<flags>][<width>][<precision>]<format>

The _strformat() function replaces each format specifier with a formatted value, leaving the
other text unchanged. Use format specifiers that are appropriate for the data type of the
corresponding arguments.

FORMATS TO SPECIFY

These are the types of formats you can specify.

FLAGS IN FORMAT SPECIFIERS

FIELD WIDTHS IN FORMAT SPECIFIERS

%<for-
mat>

Allowed Data Types Meaning

%d int32, int64, or timestamp Format the value as a decimal (base 10) number

%x int32, int64, or timestamp Format the value as a hexadecimal (base 16) number

%o int32, int64, or timestamp Format the value as an octal (base 8) number

%f float or timestamp Format the value as a floating-point number

%e
%E

float or timestamp Format the value as a floating-point number with
exponential notation

%g float or timestamp Format the value as though %f were used, unless the
exponent is less than -4 or larger than the specified
precision, in which case format the value as though %e
were used.

%s varchar or timestamp Format the value appropriately

%c bool, int32, or int64 Format the value as a single character

%% Replace with a single % character

<flag> Meaning

- Minus sign – Left-justify the field

= Equal sign – Center-justify the field

0 Zero – Pad numeric values with leading zeros

+ Plus sign – Prefix positive numeric values with '+'

<width> Meaning

<n> A positive, base-10 integer that specifies a field width

* Asterisk – obtain the width from the corresponding
argument
Reporting Guide 373

Chapter 11: SQL Functions
PRECISION OR LENGTH IN FORMAT SPECIFIERS

Return Value

The _strformat() function returns a varchar value containing the result.

Exceptions

The _strformat() function raises an SQL processing exception if the format specifier used for an
argument is invalid.

Examples

For rows with a RespSize equal to 10240, the following query returns the value "size: 10240":

SELECT _strformat("size: %d", RespSize)
FROM example_webserv_100
DURING ALL;

For rows with a RespSize equal to 10240, the following query returns two columns containing the
value "size: 10.0k". The first use of _strformat() specifies the field width and precision in the
format string, and the second specifies them in the argument list.

SELECT _strformat("size:%6.1fk", _float(RespSize)/1024.0),
_strformat("size:%*.*fk", 6, 1, _float(RespSize)/1024.0)

FROM example_webserv_100
DURING ALL;

The space after "size:" in the result occurs because the specified length is six, and "10.0k" is
only five characters wide. The function expands the value to six characters by padding the left
with a space.

TIME FUNCTIONS

This section describes functions that operate on timestamps.

<preci-
sion>

Meaning

.<n> A period followed by a base-10 integer that specifies
the precision for a numeric argument or the maximum
number of characters for a text argument

.* A period followed by an asterisk – obtain the
precision or length from the corresponding argument

Function Purpose Page

_now(), now() Returns the current system time as a timestamp page 375

_time(), time() Creates timestamps in various ways page 375

_timeadd() Adds units of time to a timestamp page 378

_timediff() Computes the difference between two timestamps page 379

_timeformat(), _timef() Creates a formatted string from a timestamp page 380
374 Reporting Guide

Time Functions
_now(), now()

The _now() function returns the current system time in GMT as a timestamp.

Synopsis

_now()

now()

Description

The _now() function returns the current system time.

The now() function is an alias for _now().

Return Value

The _now() function returns a timestamp representing the current system time.

_time(), time()

The _time() function creates a timestamp from a variety of specifications.

Synopsis

_time(<time_specification>, <adjustment>[, <adjustment>[...]])

time(<time_specification>, <adjustment>[, <adjustment>[...]])

Description

The _time() function returns a timestamp based on the <time_specification> you provide.
Generally you specify a character representation of the timestamp value you want. The function
recognizes character-based timestamps in a fixed set of character formats. In addition, you can
specify that you want the current time, or you can specify that you want the minimum or maximum
timestamps that the EDW instance allows.

With <adjustment> arguments, you can adjust the <time_specification> to an earlier or later
timestamp.

The time() function is an alias for _time().

_timeparse(),
_strptime()

Creates a timestamp from a formatted string page 383

_timestart() Rounds a timestamp down to specified precision page 385

Function Purpose Page
Reporting Guide 375

Chapter 11: SQL Functions
Arguments

TIME SPECIFICATIONS FOR THE _TIME() FUNCTION

The _time() functions recognizes the following time specifications.

Argument Description

<time_specification> A varchar value that specifies the timestamp you want; for example:

_time(’Oct 15 07:18:09 1997’)

For more information, see “Time Specifications for the _time() Function”,
next.

<adjustment> A varchar value that specifies an amount and unit of time by which to
adjust the <time_specification>; for example:

_time(’now’, ’-1wk’)

The value is expressed is expressed as ’<n><unit>’, where <n> is a
positive or negative integer and <unit> is a longhand or shorthand
notation for different units of time.
For more information, see “Units of Time for the _time() and _timeadd()
Functions”, on page 377.

Time Specifica-
tion

Pattern and/or Description Example

Minimum allowed The earliest timestamp allowed by the
EDW instance

’min’

Maximum allowed The latest timestamp allowed by the
EDW instance

’max’

Current system time The current timestamp ’now’

ISO 8601 format YYYY-MM-DDTHH:MM:SS.NNNNNNZ
The function always returns ISO 8601
timestamps in GMT, regardless of the
WITH TIMEZONE directive.

’1997-11-15T07:18:09.000000Z’

Unix date format MMM DD HH:MM:SS YYYY ’Oct 15 07:18:09 1997’

Unix date format
with time zone

MMM DD HH:MM:SS ZZZ YYYY ’Oct 15 07:18:09 GMT 1997’

Unix date format
with day of the week

WW MMM DD HH:MM:SS ZZZ YYYY ’Wed Oct 15 07:18:09 GMT 1997’

American century
format with time

MM/DD/YYYY HH:MM:SS ’10/15/1997 17:18:09’

American decade
format with time

MM/DD/YY HH:MM:SS ’10/15/97 17:18:09’

American century
format

MM/DD/YYYY ’10/15/1997’

American decade
format

MM/DD/YY ’10/15/97’
376 Reporting Guide

Time Functions
UNITS OF TIME FOR THE _TIME() AND _TIMEADD() FUNCTIONS

The _time() and _timeadd() functions recognize the following longhand and shorthand
notations for specifying units of time. Trailing ”s” characters are ignored.

Return Value

The _time() function returns a timestamp containing the value you specified.

Examples

The following query returns rows with timestamps between the time the query executes and one
hour prior:

SELECT count(*)
FROM example_webserv_100
DURING _time(’now’, ’-1hr’), _now()

;

The following query returns rows with timestamps between the time the query executes and three
months plus five days prior:

SELECT count(*)
FROM example_webserv_100
DURING _time(’now’, ’-3months’, ’-5days’), _now();

The following query returns rows with timestamps between the beginning of the current year and
the end of the first quarter:

WITH $tz AS ’PDT’

SELECT count(*)
FROM example_webserv_100
DURING // current year begin

_time(’Jan 1 00:00:00’ +
$tz +
_timeparse((_now(), ’%C’)),

// current year 1st quarter end
_time(_timeparse((_now(), ’%C’) + ’-03-31T23:59:59:999999’ +

$tz)

Longhand Time
Unit

Shorthand Time
Unit

Usage Notes

microsecond usec, microsec Specifies one microsecond.

millisecond msec, millisec Specifies one thousand microseconds.

second sec Specifies one second worth of microseconds.

minute min Specifies one minute worth of microseconds.

hour hr Specifies one hour worth of microseconds.

day Specifies 24 hours worth of microseconds.

week wk Specifies seven days worth of microseconds.

month mon Specifies 30 days-worth of microseconds.

year yr Specifies 365 days worth of microseconds.
Reporting Guide 377

Chapter 11: SQL Functions
;

_timeadd()

The _timeadd() function adds a length of time to a timestamp.

Synopsis

_timeadd(<timestamp>, <amount>, <time_unit>[, <time_zone>])

Description

The _timeadd() function adds or subtracts a length of time to or from a timestamp.

The _timeadd() function accepts negative values for <amount>, which may yield timestamps that
fall before the earliest timestamp that the EDW can store—generally, January 1, 1970.

Arguments

Return Value

The _timeadd() function returns a timestamp adjusted with the length of time added or
subtracted.

Examples

The following query returns rows with timestamps between the time the query executes and one
hour prior:

SELECT count(*)
FROM example_webserv_100
DURING _timeadd(_now(), -1, ’hr’), _now()

;

Argument Description

<timestamp> The timestamp to adjust by adding or subtracting a length of time.

<amount> An int32 that specifies the number of time units to add or
subtract.

<time_unit> A varchar value that indicates the kind of time units to add or
subtract. The value is expressed in longhand or shorthand
notation.
For more information, see “Units of Time for the _time() and
_timeadd() Functions”, on page 377.

<time_zone> Optional. A varchar value that indicates the time zone in which to
perform the calculation. Use this argument to override the default
time zone.
You control the default time zone with the TIMEZONE setting
directive. For more information, see “The TIMEZONE Setting”, on
page 311.
For a list of allowed time-zone values, see “Appendix B: Time
Zones” in the Administration Guide.
378 Reporting Guide

Time Functions
The following query returns rows with timestamps between the time the query executes and three
months prior, in a specified time zone:

WITH $tz AS ’PDT’

SELECT count(*)
FROM example_webserv_100
DURING _time(_now(), ’-3’, ’mon’, $tz), _now();

_timediff()

The timediff() function computes the difference between two timestamps.

Synopsis

_timediff(<timestamp_1>, <timestamp_2>)

Description

The _timediff() function computes the difference in microseconds between <timestamp_1>
and <timestamp_2>.

Arguments

Return Value

The _timediff() function returns an int64 value, which is the absolute value of the difference
between the two timestamps in microseconds. The return value is always positive. For a signed
result, use "_INT64(ts1) - _INT64(ts2)".

Example

The following query searches the table for users who visited a page under '/company' two or
more times, and returns the elapsed time between their first and last visit.

SELECT ClientDNS, _timediff(min(ts), max(ts))
FROM example_webserv_100
WHERE _strstr(Url,'/company') = 0
GROUP BY 1
HAVING count(*) > 1
DURING ALL

+--+
| Results for SQL file >example-time-03.sql< |
+--------------+---------+-------------------+
| ClientDNS |timediff |
| (varchar) | (int64) |
+--------------+---------*

Argument Description

<timestamp_1> The base timestamp

<timestamp_2> The timestamp for which the difference with <timestamp_1> is
computed.
Reporting Guide 379

Chapter 11: SQL Functions
output is post-sorted
+--------------+---------*
|216.239.46.200|363000000|
+--------------+---------*

_timeformat(), _timef()

The _timeformat() function creates a formatted string from a timestamp.

Synopsis

_timeformat(<time_format_string>, <timestamp>[, <time_zone>])

_timef(<time_format_string>, <timestamp>[, <time_zone>])

Description

The _timeformat() function creates a date-and-time-of-day varchar from a timestamp by
replacing the formatting directives in <time_format_string> with the appropriate fields from
<timestamp>.

The _timef() function is an alias for _timeformat().

Arguments

FORMAT STRINGS AND FORMATTING DIRECTIVES FOR THE _TIMEFORMAT() AND _TIMEPARSE() FUNCTIONS

A <time_format_string> specifies the format you want for character-based timestamps. You
can use text literals, such as hyphens (-) and colons (:), and you can use formatting directives,
which begin with a percent sign (%). Enclose time format strings in quotation marks when you
pass them as arguments to the _timeformat() and _timeparse() functions.

Argument Description

<time_format_string> A varchar value that specifies the format of the output date and
time-of-day. For example, the following time format string
specifies month-day-year format:

%m-%d-%y

It produces results similar to the following:

11-16-06
For more information, see “Format Strings and Formatting
Directives for the _timeformat() and _timeparse() Functions”, on
page 380.

<timestamp> A timestamp value to be formatted.

<time_zone> Optional. A varchar value that indicates the time zone in which to
perform the calculation. You control the default time zone with the
TIMEZONE setting directive. For more information, see “The
TIMEZONE Setting”, on page 311.
For a list of allowed values, see “Appendix B: Time Zones” in the
Administration Guide
380 Reporting Guide

Time Functions
For example, the following time format string uses two text literals and three directives to specify
character-based timestamps in month-day-year format:

’%m-%d-%y’

These are the formatting directives you can use in time format strings.

Formatting Directive Meaning

%a The abbreviated weekday name

%A The full weekday name

%b The abbreviated month name

%B The full month name

%c The preferred date and time representation for the current locale

%C The century number (year/100) as a 2-digit integer; single digits are preceded
by a zero. See also %y and %Y.

%d The day of the month as a decimal number (range 01 to 31)

%D Equivalent to: %m/%d/%y
NOTE: In countries other than the United States, %d/%m/%y is the standard
date format. To avoid the ambiguity of these two date formats, use the ISO
standard for date formats: %Y/%m/%d. In addition to avoiding ambiguity, the
ISO format sorts in a reasonable way.

%e Like %d, the day of the month as a decimal number, but a leading zero is
replaced by a space

%E POSIX locale extensions. The sequences %Ec %EC %Ex %EX %Ey %EY %Od
%Oe %OH %OI %Om %OM %OS %Ou %OU %OV %Ow %OW %Oy are
supposed to provide alternate representations.
Additionally %OB implemented to represent alternative months names (used
standalone, without day mentioned).

%G The ISO 8601 year with century as a decimal number. The 4-digit year
corresponding to the ISO week number (see %V). This has the same format and
value as %y, except that if the ISO week number belongs to the previous or next
year, that year is used instead.

%g Like %G, but without century, that is, with a 2-digit year (00-99)

%h Equivalent to %b

%H The hour as a decimal number using a 24-hour clock (range 00 to 23)

%I The hour as a decimal number using a 12-hour clock (range 01 to 12)

%j The day of the year as a decimal number (range 001 to 366)

%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are
preceded by a blank. See also %H

%l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are
preceded by a blank. See also %I

%m The month as a decimal number (range 01 to 12)

%M The minute as a decimal number (range 00 to 59)

%n A newline character

%O Same as %E
Reporting Guide 381

Chapter 11: SQL Functions
Return Value

The _timeformat() function returns a varchar with a formatted date and time-of-day.

%p Either 'AM' or 'PM' according to the given time value, or the corresponding
strings for the current locale. Noon is treated as 'PM' and midnight as 'AM'.

%P Like %p but in lowercase: 'am' or 'pm' or a corresponding string for the current
locale

%r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to
'%I:%M:%S %p'.

%R The time in 24-hour notation (%H:%M)
For a version including the seconds, see %T below.

%s The number of seconds since the epoch defined for the EDW instance.

%S The second as a decimal number (range 00 to 61)

%t A tab character

%T The time in 24-hour notation (%H:%M:%S)

%u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w

%U The week number of the current year as a decimal number, range 00 to 53,
starting with the first Sunday as the first day of week 01. See also %V and %W.

%V The ISO 8601:1988 week number of the current year as a decimal number,
range 01 to 53, where week 1 is the first week that has at least 4 days in the
current year, and with Monday as the first day of the week. See also %U and %W.

%w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.

%W The week number of the current year as a decimal number, range 00 to 53,
starting with the first Monday as the first day of week 01.

%x The preferred date representation for the current locale without the time

%X The preferred time representation for the current locale without the date

%y The year as a decimal number without a century (range 00 to 99)

%Y The year as a decimal number including the century

%z The time-zone as a numeric offset from GMT. Required to emit dates that
conform with RFC822 (using '%a, %d %b %Y %H:%M:%S %z').
Valid for the following functions:
• _timeformat()

• _timef()

%Z The time-zone as name or abbreviation.
Valid for the folloiwng functions:
• _timeparse()

• _strptime()

• _timeformat()

• _timef()

%+ The date and time in C <date(1)> format

%% A literal '%' character

Formatting Directive Meaning
382 Reporting Guide

Time Functions
Exceptions

The _timeformat() function raises an SQL processing exception if <time_format_string>
does not conform with the defined syntax.

Example

The following query returns the epoch of the EDW instance, formatted as a string. The epoch is
January 1, 1970. It is always represented internally as 0 microseconds.

WITH $epoch AS timestamp ’0usec’

SELECT _timeformat(’%b %e %H:%M:%S %Y’, $epoch)

+--+
| Results for SQL file >example-time-04.sql< |
+--------------------+-----------------------+
| timeformat |
| (varchar) |
+--------------------*
output is post-sorted
+--------------------*
|Jan 1 00:00:00 1970|
+--------------------*

The following query returns the URLs visited by '65.194.51.154', along with the hour and minute
the URLs were visited:

SELECT ts, _timeformat('%H:%M', ts) AS time, url
FROM example_webserv_100
WHERE ClientDNS = '65.194.51.154'
ORDER BY 1
DURING ALL

+--+
| Results for SQL file >example-time-07.sql< |
+---------------------------+---------+-------------+
| ts | time | url |
| (timestamp) |(varchar)| (varchar) |
+---------------------------+---------+-------------*
2002-02-01T08:02:07.000000Z	08:02	/summary.html
2002-02-01T08:17:05.000000Z	08:17	/summary.html
2002-02-01T08:32:22.000000Z	08:32	/summary.html
2002-02-01T09:17:12.000000Z	09:17	/summary.html
2002-02-01T10:16:54.000000Z	10:16	/summary.html
2002-02-01T11:01:51.000000Z	11:01	/summary.html
+---------------------------+---------+-------------+

_timeparse(), _strptime()

The _timeparse() function creates a timestamp from a date-and-time-of-day varchar.
Reporting Guide 383

Chapter 11: SQL Functions
Synopsis

_timeparse(<date_and_time>, <time_format_string>[, <time_zone>])

_strptime(<date_and_time>, <time_format_string>[, <time_zone>])

Description

The _timeparse() function creates a timestamp value from a character-based timestamp. It uses
the specification in <time_format_string> to interpret the date and time-of-day components in
<date_and_time>.

The _strptime() function is an alias for _timeparse().

Arguments

Return Value

The _timeparse() function returns a timestamp.

Exceptions

The _timeparse() function raises an SQL processing exception if:

<time_format_string> does not conform with the defined syntax

input value and time-format string omit hour, minute, and second

Argument Description

<date_and_time> A varchar value with a date and time-of-day to be parsed and
converted to a timestamp

<time_format_string> A varchar value that specifies the format of the input date and
time-of-day. For example, the following time format string
specifies month day, year hour:minute:second format:

%b %d, %Y %H:%M:%S

It expects the value in <date_and_time> to be similar to the
following:

Jul 8, 2009 19:01:36

For more information, see “Format Strings and Formatting
Directives for the _timeformat() and _timeparse() Functions”, on
page 380.

<time_zone> Optional. A varchar value that indicates the time zone in which to
perform the calculation. You control the default time zone with the
TIMEZONE setting directive. For more information, see “The
TIMEZONE Setting”, on page 311.
For a list of allowed values, see “Appendix B: Time Zones” in the
Administration Guide.
384 Reporting Guide

Time Functions
Examples

The following query returns the specified timestamp in IS0 8601 format:

WITH $timestamp AS ’11-16-06:00:00:00’

SELECT _timeparse($timestamp, ’%m-%d-%y:%H:%M:%S’)

+--+
| Results for SQL file >example-time-05.sql< |
+---------------------------+----------------+
| timeparse |
| (timestamp) |
+---------------------------*
|2006-11-16T00:00:00.000000Z|
+---------------------------*

_timestart()

The _timestart() rounds timestamp down to a specified unit of precision.

Synopsis

_timestart (<timestamp>, <unit>[, <time_zone>]])

Description

The _timestart() function rounds down <timestamp> to the <unit> of time specified.

Arguments

Return Value

The _timestart() functions returns a timestamp.

Argument Description

<timestamp> A timestamp value to be rounded down

<unit> A varchar value that indicates the time unit to round to. The
value is expressed in longhand (microsecond, millisecond,
second, hour, minute, day, week, month, year) or in shorthand
(usec, microsec, msec, millisec, sec, min, hr, wk, mon, yr) and
must be enclosed within quotation marks. Sunday is the
beginning of the week.

<time_zone> Optional. A varchar value that indicates the time zone in which to
perform the calculation. You control the default time zone with the
TIMEZONE setting directive. For more information, see “The
TIMEZONE Setting”, on page 311.
For a list of allowed values, see “Appendix B: Time Zones” in the
Administration Guide.
Reporting Guide 385

Chapter 11: SQL Functions
Exceptions

The _timestart() function raises an SQL processing exception the value of <unit> does not
conform to the specified syntax.
386 Reporting Guide

Network Address Functions
NETWORK ADDRESS FUNCTIONS

This section describes these functions that operate on network address values.

_abbrev()

The _abbrev() function produces an abbreviated display format of a network address as text.

Synopsis

_abbrev(<expression>)

Description

The _abbrev() function produces an abbreviated display of <expression> as text, where
<expression> is a column expression that evaluates to an inet value representing a valid IPv4
or IPv6 network address.

Arguments

Return Value

The _abbrev() function returns a varchar value. The value will be "(invalid)" if the column
expression did not evaluate to a valid inet value.

Function Purpose Page

_abbrev() Abbreviated display format as text page 387

_broadcast() Broadcast address for network page 388

_family() Extract family of address: 4 for IPv4, 6 for IPv6 page 388

_host() Extract IP address as text page 389

_hostmask() Construct host mask for network page 390

_masklen() Extract netmask length page 390

_netmask() Construct netmask for network page 391

_set_masklen() Set netmask length for inet value page 391

_mapto_ipv4,
_mapto_ipv6()

Maps an IPv6 address to an IPv4 address page 392

_inet_plus() Addition operator function page 392

_inet_minus() Substraction operator function page 393

_inet_and(),
_inet_not(),
_inet_or()

Bitwise AND operator function
Bitwise NOT operator function
Bitwise OR operator function

page 394

Argument Description

<expression> A column expression that evaluates to an inetvalue.
Reporting Guide 387

Chapter 11: SQL Functions
Examples

The following query returns all values of the addr1 column of the inet_test table appended to
the string "Network Address: "

SELECT _strcat('Network Address:',_abbrev(addr1))FROM inet_test DURING ALL;

If the addr1 column held an inet value 10.1.0.0/16 then the _abbrev() function returns the
varchar value "10.1.0.0/16".

_broadcast()

The _broadcast() function produces a broadcast address from a specified network address.

Synopsis

_broadcast(<expression>)

Description

The _broadcast() function produces a broadcast address from <expression> as an inet
value, where <expression> is a column expression that evaluates to an inet value
representing a valid IPv4 or IPv6 network address.

Arguments

Return Value

The _broadcast() function returns an inet value.

_family()

The _family()function returns the family of the specified network address.

Synopsis

_family(<expression>)

Description

The _family() function returns the family of the specified network address; 4 for IPv4, 6 for IPv6
address.

<expression> is a column expression that evaluates to an inet value representing a valid IPv4 or
IPv6 network address.

Argument Description

<expression> A column expression that evaluates to an inetvalue.
388 Reporting Guide

Network Address Functions
Arguments

Return Value

The _family() function returns one of the following int32 values:

_host()

The _host() function extracts just the IP address as text from a specified network address.

Synopsis

_host(<expression>)

Description

The _host() function extracts an IP address from <expression> as a varchar value, where
<expression> is a column expression that evaluates to an inet value representing a valid IPv4
or IPv6 network address.

Arguments

Return Value

The _host()function returns an varchar value.

Examples

The following query returns all values of the addr1 column of the inet_test table appended to
the string "Host Address: "

SELECT _strcat('Host Address: ',_host(addr1)) FROM inet_test DURING ALL;

Argument Description

<expression> A column expression that evaluates to an inetvalue.

Value Description

0 the <expression> evaluated to an empty inet value.

1 invalid (the <expression> evaluated to a value that was neither a valid IPv4 nor IPv6
representation

4 IPv4 address

6 IPv6 address

Argument Description

<expression> A column expression that evaluates to an inetvalue.
Reporting Guide 389

Chapter 11: SQL Functions
If the addr1 column held an inet value 10.1.0.0/16 then the _host() function returns the
varchar value "10.1.0.0".

_hostmask()

The _hostmask() function produces a host mask for the specified network address.

Synopsis

_hostmask(<expression>)

Description

The _hostmask() function produces a host mask from <expression> as an inet value, where
<expression> is a column expression that evaluates to an inet value representing a valid IPv4
or IPv6 network address.

Arguments

Return Value

The _hostmask()function returns an inet value.

Examples

If the column expression held an inet value 192.168.1.0/16, then the _hostmask() function
returns the inet value 0.0.255.255.

_masklen()

The _masklen() function extracts the network mask length for a specified network address.

Synopsis

_masklen(<expression>)

Description

The _masklen() function extracts the network mask length from <expression> as an int32
value, where <expression> is a column expression that evaluates to an inet value representing
a valid IPv4 or IPv6 network address.

Arguments

Argument Description

<expression> A column expression that evaluates to an inetvalue.

Argument Description

<expression> A column expression that evaluates to an inetvalue.
390 Reporting Guide

Network Address Functions
Return Value

The _masklen() function returns an int32 value.

Examples

If the column expression held an inet value 192.168.1.0/16, then the _masklen() function
returns the int32 value 16.

_netmask()

The _netmask()function produces a network mask for a specified network address.

Synopsis

_netmask(<expression>)

Description

The _netmask()function produces a network mask from <expression> as an inet value, where
<expression> is a column expression that evaluates to an inet value representing a valid IPv4
or IPv6 network address.

Arguments

Return Value

The _netmask() function returns an inet value.

Examples

If the column expression held an inet value 192.168.1.0/16, then the _netmask() function
returns the inet value 255.255.0.0.

_set_masklen()

The _set_masklen() function sets the network mask length for a specified network address.

Synopsis

_set_masklen(<expression>,<length>)

Description

The _set_masklen() function sets the network mask length for <expression> as an inet
value, where <expression> is a column expression that evaluates to an inet value representing
a valid IPv4 or IPv6 network address.

Argument Description

<expression> A column expression that evaluates to an inetvalue.
Reporting Guide 391

Chapter 11: SQL Functions
Arguments

Return Value

The _set_masklen()function returns an inet value.

Examples

If the column expression held an inet value 192.168.1.5/24, then the _set_masklen()
function returns the inet value 192.168.1.5/16 if the <length> column expression contained
the int32 value 16.

_mapto_ipv4, _mapto_ipv6()

The _mapto_ipv4() and _mapto_ipv6() functions return a specified network address as an
IPv4 or IPv6 address.

Synopsis

_broadcast(<expression>)

Description

The _mapto_ipv4() function produces an IPv4 address from <expression> as an inet value,
where <expression> is a column expression that evaluates to an inet value representing a
valid IPv4-mapped IPv6 network address (see http://tools.ietf.org/html/rfc4291#section-2.5.5.2).

The _mapto_ipv6() function produces an IPv4-mapped IPv6 network address from
<expression> as an inet value, where <expression> is a column expression that evaluates
to an inet value representing a valid IPv4 network address.

Arguments

Return Value

The mapto_ipv4() and _mapto_ipv6() functions returns an inet value.

_inet_plus()

The _inet_plus() function provide the addition operator for inet values.

Argument Description

<expression> A column expression that evaluates to an inetvalue.

<length> A column expression that evaluates to an int32 value, representing the network
mask length

Argument Description

<expression> A column expression that evaluates to an inetvalue.
392 Reporting Guide

Network Address Functions
Synopsis

_inet_plus(<operand1>,<operand2>)

Description

The _inet_plus() and _inet_minus() functions provide addition and subtraction capability in
the absence of support for the "+" and "-" operators on inet values within Sensage SQL.

Arguments

Return Value

The inet_plus() function returns an inet value.

Examples

If the first operand held an inet value 127.0.0.1, then the _inet_plus() function returns the
inet value 127.0.1.2 if the second operand contained the int32 value 257.

_inet_minus()

The _inet_minus() function provides the subtraction operator for inet values.

Synopsis

_inet_minus(<operand1>,<operand 2>)

Description

The _inet_plus() and _inet_minus() functions provide addition and subtraction capability in
the absence of support for the "+" and "-" operators on inet values within Sensage SQL.

Arguments

Return Value

The _inet_minus()function returns an inet value unless both operands are inet values, that is,
we are subtracting two inet values, in which case an int64 value is returned. Consequently,
subtracting two inet values means that the int64 value cannot properly represent the delta
between all pairs of IPv6 addresses. Under this condition, Sensage SQL does not produce an

Argument Description

<operand1> A column expression that evaluates to an inetvalue.

<operand2> A column expression that evaluates to an int32 or int64 value

Argument Description

<operand1> A column expression that evaluates to an inet value.

<operand2> A column expression that evaluates to an int32, int64 or inet value
Reporting Guide 393

Chapter 11: SQL Functions
overflow error but simply wraps the integers/addresses and proceeds (this is consistent with how
math operations on simple integers are performed in Sensage SQL).

Examples

If the first operand held an inet value 192.168.1.2, then the _inet_minus() function returns
the inet value 192.168.0.1 if the second operand contained the int32 value 257.

If the first operand held an inet value 192.168.1.2, then the _inet_minus() function returns
the int64 value 257 if the second operand contained the inet value 192.168.0.1.

_inet_and(), _inet_not(), _inet_or()

The _inet_and(),_inet_not() and _inet_or() functions provide the bitwise AND, NOT and
OR operators for inet values.

Synopsis

_inet_and(<expression>,<operand>)
_inet_not(<expression>,<operand>)
_inet_or (<expression>,<operand>)

Description

The _inet_and(),_inet_not() and _inet_or() functions provide the bitwise AND, NOT and
OR operator capability in the absence of support for the "&", "^" and "|" operators on inet values
within Sensage SQL.

Arguments

Return Value

The _inet_and(),_inet_not() and _inet_or() functions return an inet value.

Examples

If the first operand held an inet value 127.0.0.1, then the _inet_plus() function returns the
inet value 127.0.1.2 if the second operand contained the int32 value 257.

MISCELLANEOUS FUNCTIONS

This section describes miscellaneous functions.

Argument Description

<expression> A column expression that evaluates to an inetvalue.

<operand> A column expression that evaluates to an int32, int64 or inet value
394 Reporting Guide

Miscellaneous Functions
_quantize()

The quantize() performs distribution analysis on the values in a column.

Synopsis

_quantize(<expression>, <low_format>, <limit>, <high_format>)

_quantize(<expression>, <low_format>[, <start>, <format>, <increment>
[, <start>, <format>, <increment> [...]], <limit>, <high_format>)

Description

The _quantize() function performs distribution analysis on numeric values returned in a column
of a result set. The function returns formatted strings that describe the distribution ranges in which
the numeric values fall. You specify the distribution ranges with <limit> and optionally with
<start> and <increment> arguments. These arguments specify the thresholds that delimit one
distribution range from the next.

You can specify thresholds with:

a single value that delimits two ranges

—or—

a set of values that delimit multiple ranges

The function returns a formatted string that is derived from one of the format arguments. Each
format argument must be a varchar that includes a threshold variable. The threshold variable is
expressed as %1 for low thresholds and %2 for high thresholds. For example, a low-range format
argument might be "below %1", a high-range format argument might be "%2 and above", and a
mid-range format argument might be "%1 up to %2".

The formatted string that _quantize() returns indicates the range in which <expression> falls.
The function compares the value of each expression in the result set against values specified for
<limit>, <start>, and <increment>. When the shorter syntax is used, the function operates with
only two ranges. When the longer syntax is used, the function operates with three or more
ranges.

Function Purpose Page

_quantize() Performs distribution analysis page 39
5

_fifo() Pushes a value onto a queue page 39
9

_lms_taskid() Returns the task ID of the SQL request page 39
9

_lms_buildinfo() Returns information about the version of the EDW page 40
1

_fromname() Returns the name of the table that is being queried page 40
2

_fromindex() Returns the index of the table that is being queried page 40
3
Reporting Guide 395

Chapter 11: SQL Functions
Arguments

DISTRIBUTING DATA BETWEEN TWO RANGES

When only <limit> is specified, the _quantize() function compares the value of <expression>
to the value of <limit>. If <expression> is less than <limit>, the function replaces %1 in the
<low_format> argument with <limit> and returns the formatted string. If <expression> is equal
to or greater than <limit>, the function replaces %2 in the <high_format> argument with
<limit> and returns the formatted string.

For example, assume you run the following query:

SELECT RespSize, _quantize(RespSize, "under %1", 16000, "%2 or above") as range
FROM example_webserv_100
DURING ALL;

The example below illustrates a subset of the rows that the _quantize() function returns.

+--+
| Results for SQL file >(standard input)< +
+--------+--------------+------------------+
|RespSize| range |
|(int32) | (varchar) |
+--------+--------------+
37361	16000 or above
261	under 16000
0	under 16000
7121	under 16000
37361	16000 or above
3172	under 16000
17252	16000 or above
12203	under 16000
0	under 16000
7121	under 16000

DISTRIBUTING DATA AMONG MULTIPLE RANGES

When <start>, <format>, and <increment> arguments are specified, in addition to <limit>, the
_quantize() function compares the value of <expression> to <limit> and the other
intermediate thresholds, which it computes. The additional <format> argument must include both

Argument Description

<expression> A column expression that evaluates to an int32, int64, or float
value

<low_format> A varchar that includes %1 as the low-value threshold

<start>* Optional. An int32, int64, or float value

<format>* Optional. A varchar that includes %1 as low-value threshold and %2
as high-value threshold

<increment>* Optional. An int32, int64, or float value

<limit> An int32, int64, or float value

<high_format> A varchar that includes %2 as the high-value threshold

* The optional arguments operate as a set. You cannot specify one without specifying the others. Multiple sets of the
optional arguments are allowed.
396 Reporting Guide

Miscellaneous Functions
%1 as the low threshold variable and %2 as the high threshold variable; for example, it might be
"%1 up to %2".

The _quantize() function evaluates the syntax with one start value as follows:

If <expression> is equal to or greater than <limit>, _quantize() replaces “%2” in
<high_format> with <limit> and returns the resulting string.

If <expression> is less than <start>, _quantize() replaces “%1” in <low_format> with
<start> and returns the resulting string.

If <expression> is greater than <start> but less than <limit>, _quantize() operates with a
set of intermediate ranges to which it applies <format>.

The first intermediate range begins with the start value and ends with the threshold computed
by adding the increment value to the start value. The quantize() function computes additional
intermediate ranges by sequentially adding the increment value to the upper threshold of the
previous range. It then compares each expression to the values in these intermediate ranges.
When <expression> is greater than <start> but less <limit>, _quantize() determines
which intermediate range it falls within. It replaces %1 in <format> with the lower threshold of
the range and replaces %2 with the higher threshold and returns the resulting string.

For example, assume you run the following query:

SELECT RespSize, _quantize(RespSize, "under %1",
1000, "%1 up to %2", 5000,
16000, "%2 or above") as range

FROM example_webserv_100
DURING ALL;

The example below illustrates a subset of the rows that the _quantize() function returns.

+--+
| Results for SQL file >(standard input)< +
+--------+-----------------+---------------+
|RespSize| range |
|(int32) | (varchar) |
+--------+-----------------+
37361	16000 or above
261	under 1000
0	under 1000
7121	6000 up to 11000
37361	16000 or above
3172	1000 up to 6000
17252	16000 or above
12203	11000 up to 16000
0	under 1000
7121	6000 up to 11000

IMPORTANT: The _quantize() function returns the high-format string for any value that
equals or exceeds <limit>. To avoid confusing results, ensure that <start> and
<increment> define intermediate ranges such that an upper threshold eventually
coincides with <limit>.
Reporting Guide 397

Chapter 11: SQL Functions
SPECIFYING MULTIPLE START VALUES

You can specify more than one set of <start>, <format>, and <increment> arguments to the
_quantize() function. The _quantize() function evaluates the syntax with multiple start values
as follows:

If <expression> is equal to or greater than <limit>, _quantize() replaces “%2” in
<high_format> with <limit> and returns the resulting string.

If <expression> is less than the first <start>, _quantize() replaces “%1” in <low_format>
with the first <start> and returns the resulting string.

If <expression> is greater than the first <start> but less than the second <start>,
_quantize() places the expression value within the appropriate intermediate range between
the two.

If <expression> is greater than the second <start> but less than the third <start>, or
<limit> if there are no additional <start> arguments, _quantize() places the expression
value within the appropriate intermediate range.

IMPORTANT: If there are multiple start values, you must list them in increasing order for
the result to be meaningful.

For example, assume you run the following query:

SELECT RespSize, _quantize(RespSize, "under %1",
1000, "%1 up to %2", 500,
5000, "%1 up to %2", 1000,
16000, "%2 or above") as range

FROM example_webserv_100
DURING ALL;

The graphic below illustrates the purpose of the numeric values in the above query.

The example below illustrates a subset of the rows that the _quantize() function returns.

+--+
| Results for SQL file >(standard input)< +
+--------+-----------------+---------------+
|RespSize| range |
|(int32) | (varchar) |
+--------+-----------------+
37361	16000 or above
261	under 1000
0	under 1000
8132	8000 up to 9000
37361	16000 or above

SELECT RespSize, _quantize(RespSize, "under
%1",

1000, "%1 up to %2", 500,

5000, "%1 up to %2", 1000,

16000, "%2 or above") as range

First <increment>

Second

<limit>

First <start>

Second
398 Reporting Guide

Miscellaneous Functions
3172	3000 up to 3500
17252	16000 or above
5208	5000 up to 6000
12203	12000 up to 13000
43	under 1000
3894	3500 up to 4000
2421	2000 up to 2500
4765	4500 up to 5000
1313	1000 up to 1500

GRAPHING THE RESULTS

Because the _quantize() function labels each range, you can graph its result set in HawkEye
AP Console. To make the graph meaningful, put the statement with the _quantize() function in
a subquery and then count the ranges in the main query. Run the query in HawkEye AP Console
and display the results as a bar graph.

For example, the following query enables graphing in HawkEye AP Console:

WITH subquery as (
SELECT RespSize, _quantize(RespSize, "under %1",

5000, "%1 to %2", 10000,
15000, "%1 to %2", 25000,
30000, "%2 or above") as range

FROM example_webserv_100
DURING ALL

)
SELECT range, count(*)
FROM subquery
GROUP BY range
ORDER BY 1

Return Value

The return type of the _quantize() function is a varchar.

Exceptions

The _quantize() function raises a SQL processing exception under any of these conditions:

When the data types of the <expr> or <limit> arguments are not int32, int64, or float
values.

When the data types of the <expr> and <limit> arguments are not identical.

When the data type of format arguments are not varchar.

If you pass an incorrect number of arguments.

_fifo()

The _fifo() function pushes a value onto a queue.

Synopsis

_fifo(<list_name>, <value>, <default>)
Reporting Guide 399

Chapter 11: SQL Functions
Description

If the queue designated by <list_name> contains at least one element, _fifo() shifts off the first
value and adds the specified <value> to the end of the queue, returning the removed value.

If the queue designated by <list_name> is empty, _fifo() adds the specified <value> to the
end of the queue and returns the value of the <default> argument, if specified.

If the queue designated by <list_name> is empty and no <default> is specified, _fifo() raises
an exception.

This function is often used with the SLICE BY clause. For more information, see “SLICE BY
Clauses”, on page 282.

Arguments

Return Value

The return type is the type of the <default> argument.

Exceptions

The _fifo() function raises an SQL processing exception if the data types of <value> and
<default> are not the same.

_lms_taskid()

The _lms_taskid() function returns the task ID of the SQL request.

Synopsis

_lms_taskid()

Description

The _lms_taskid() function returns the internal task ID generated by the system when it receives
a SQL request.

Return Value

The _lms_taskid() function returns a varchar value that contains the internal task ID.

Argument Description

<list_name> The name of a list such as ’myfifo’. The name <list_name>may be
derived from a column so that each group (those rows with the
same value in a certain column) has its own FIFO queue.

<value> A value of any data type that designates the value to be pushed
into the queue

<default> Mandatory. The value to be returned when the designated queue
is empty.
400 Reporting Guide

Miscellaneous Functions
Example

The following query returns the value of the task ID:

SELECT TOP 1 _lms_taskid()
FROM example_webserv_100
DURING ALL

Results:

+---+
| Results for SQL file >example-lms-01.sql< |
+--------------------------------+----------+
| lms_taskid |
| (varchar) |
+--------------------------------*
output is post-sorted
+--------------------------------*
|955BC97C2E68F83F797E0AEFF3BC0307|
+--------------------------------*

_lms_buildinfo()

The _lms_buildinfo() function returns information about the version of the EDW.

Synopsis

_lms_buildinfo()

Description

The _lms_buildinfo() function returns a string describing the version of the EDW.

Return Value

The _lms_buildinfo() function returns a varchar that contains the build date, the ID of the most
recent committed software change, the name of the build client specification, the name and IP
address of the machine on which the build occurred, the directory containing the build files, and a
list of the files compiled with VERBOSE logging enabled.

Example

The following query returns the build information for the EDW.

SELECT TOP 1 _lms_buildinfo()
FROM example_webserv_100
DURING ALL;

The following shows an example of the output:

2008-09-25T03:44:06+0000 Change 56459 Client name:
source.quattroloop.2006.main.56460 Client host: eng.hq.sensage.com Client root:
/export/services/buildloop/tmp/67c1ae309a349577d03d1973ae9d7d21/ootb-analytics
verbose:
Reporting Guide 401

Chapter 11: SQL Functions
_fromname()

The _fromname() function returns the fully qualified name of each table or view that is being
queried.

Synopsis

_fromname()

Description

HawkEye AP supports a FROM @<list_expression> construct that concatenates the rows of one
or more tables and/or views and provides the result as the source data for the SELECT statement.
The result of the query is equivalent to the results of a UNION ALL query.

You can use the _fromname() function to identify the source object (table or view) of each row in
the result set of a SELECT statement whose FROM clause uses the @<list_expression>
construct. The _fromname() function evaluates to a string that represents the name of the object
in the FROM @<list_expression> construct for each returned row.

For more information, see:

“FROM Clauses”, on page 273

“Working with Lists”, on page 313

“_tablematch()”, on page 334

Return Value

The _fromname() function returns a varchar with the name of each table or view that is being
queried.

Examples

The following statement queries two tables and returns the earliest timestamp, the latest
timestamp, and the number of records in each table, grouped by tablename. The name of the
table is returned in the first column of the result set.

SELECT _fromname(), min(ts), max(ts), count(*)
FROM @_list('example_webserv_100', 'example_syslog')
GROUP BY 1
DURING ALL;

The following statement queries all tables in the default namespace and returns a count of each
url in each table returned. In this case, the table names are not known at the time the query is
written.

SELECT _fromname(), url, count(*)
FROM @_tablematch('.*')
GROUP BY 1,2
DURING ALL;
402 Reporting Guide

Miscellaneous Functions
_fromindex()

The _fromindex() function returns the index of the table or view that is being queried.

Synopsis

_fromindex()

Description

HawkEye AP supports a FROM @<list_expression> construct that concatenates the rows of one
or more tables and/or views and provides the result as the source data for the SELECT statement.
The result of the query is equivalent to the results of a UNION ALL query.

You can use the _fromindex() function to identify the source object (table or view) of each row in
the result set of a SELECT statement whose FROM clause uses the @<list_expression>
construct. The _fromindex() function evaluates to an int64. The position is zero-based, which
means that 0 represents the first name, 1 the second, and so on.

For more information, see:

“FROM Clauses”, on page 273

“Working with Lists”, on page 313

“_tablematch()”, on page 334

Return Value

The _fromindex() function returns an int64 with the 0-based index of the table that is being
queried.

Examples

The following statement queries two tables and returns the earliest timestamp, the latest
timestamp, and the number of records in each table, grouped by the position of the table in the
result set. The position of the first table is represented as 0.

SELECT _fromindex(), min(ts), max(ts), count(*)
FROM @_list('example_webserv_100', 'example_syslog')
GROUP BY 1
DURING ALL;

The graphic below illustrates the results of this query.
Reporting Guide 403

Chapter 11: SQL Functions
The following statement queries all tables in the default namespace and returns a count of each
url in each table, grouped by the position of the table in the result set.

SELECT _fromindex(), url, count(*)
FROM @_tablematch('.*')
GROUP BY 1,2
DURING ALL;

NOTE: In this case, the table names are not known, either at the time the query is written or in the
result set. This query, which enables you to aggregate the results by table position rather than by
the full result set, is useful for aggregating the result data when you do not need to know the table
names.

The graphic below illustrates a few of the results of this query.
404 Reporting Guide

CHAPTER 12

Perl Subroutines

HawkEye AP SQL can perform simple transformation and analysis of event-log data, but it has
limitations in performing complex transformations, also known as business logic. The HawkEye
AP SQL engine includes a Perl subsystem that lets you declare and use Perl code in your
HawkEye AP SQL statements.

This chapter includes these sections:

• “About Perl Subroutines in HawkEye AP SQL”, next

• “Declaring Perl Functions”, on page 406

• “Declaring Perl Aggregates”, on page 407

• “Perl Execution Environment”, on page 409

• “Accessing External Modules”, on page 412

• “Testing and Debugging Perl Subroutines”, on page 413

• “Installing Perl Modules”, on page 415

ABOUT PERL SUBROUTINES IN HAWKEYE AP SQL

Perl subroutines can be declared as either functions or aggregates. Perl Functions are passed
arguments for each row being processed, and they return a single value for each row. For
example, _strformat() is an SQL function. You pass in arguments and it returns a string. With
Perl functions, you can write your own routines like _strformat().

Perl aggregates behave like SQL aggregation functions, such as sum() and avg(). Perl
aggregates are passed arguments for each group created by a GROUP BY clause, and they
return one result per group. Perl aggregates are useful for analyzing multiple records, such as
when performing session analysis. For example, you might declare a Perl aggregate to detect
suspicious user behavior. Use a GROUP BY clause to create a group for each user, with
subgroups for each session. Then apply your Perl aggregate to match against suspicious
patterns.

How Perl Processing Works

The basic purpose of the SQL engine is to consume streams of columns from a stream parser
and send streams of columns to a stream formatter. Without displaying its processing to the user,
the SQL engine rewrites calls to Perl functions to call a built-in function named _perl(). This
function invokes the Perl interpreter once per column value.

For each query, the Perl engine is initialized, which compiles the Perl code and checks for errors.
Assuming there are no errors, the Perl code is evaluated, registering the Perl functions and
initializing any global variables.

For a Perl function, the SQL engine performs these steps

1 The SQL engine evaluates each parameter to the Perl function (per row).

2 For each argument, the value is converted into a varchar if necessary.

3 The _perl() SQL function is called with these arguments.
Reporting Guide 405

Chapter 12: Perl Subroutines
4 The result of the _perl() expression is a column of varchar values corresponding to the
values returned by the Perl function.

For a Perl aggregate, the SQL engine performs these steps

1 The SQL engine saves up argument-records for each unique group (buffering).

2 When enough records have been buffered, _perlagg() is called with these arguments, similar
to _perl(), including the conversion to varchar when necessary.

3 The _perlagg() SQL function loops through each argument record and invokes the Perl
aggregate.

4 After all values for a group have been processed (not just the last value for this one buffer of
records), the routine whose name is derived by adding _final to the name specified by the
first argument to the _perlagg() expression is invoked.

5 The result of the _perlagg() expression is a column of varchar values that correspond to the
values returned by the final Perl subroutine.

DECLARING PERL FUNCTIONS

You declare Perl functions as processing directives in a WITH clause. For example, the following
SQL Select statement declares a Perl function named maxarg(), which returns the larger of two
values.

-- declare a Perl function
WITH maxarg AS BUILTIN 'perl5' FUNCTION <<EOF

sub maxarg {
my($x,$y) = @_;

if ($x > $y) {
return $x;

}

return $y;
}

EOF

-- use the Perl function in the query
SELECT maxarg(_strlen(Url), _strlen(Referrer)),

_strlen(Url),
_strlen(Referrer)

FROM example_webserv_100
DURING ALL;

Because the Perl declaration spans lines, it is bounded by here document syntax <<EOF ... EOF.
Here documents tell the SQL parser to treat the contents as a single varchar literal, including the
newline characters.

For more information on declaring Perl functions, see “User-Defined Subroutines”, on page 306
406 Reporting Guide

Declaring Perl Aggregates
DECLARING PERL AGGREGATES

You declare Perl aggregates as processing directives in a WITH clause. Within a Perl aggregate
declaration, you specify a pair of subroutines and global variables that the two subroutines can
access. One subroutine manages the incremental state of groups in an aggregate, and the other
subroutine returns the final aggregate value for a group. The second subroutine, which returns
the final value, has the same name as the first, but with a suffix of _final. The SQL query engine
calls each subroutine when appropriate.

The following SQL Select statement implements a custom Perl aggregate named my_max():

WITH my_max AS BUILTIN 'perl5' AGGREGATE <<EOF
-- global variables
my %state;

-- incremental subroutine, called for each value in a group
sub my_max {
my $call = $_[0]; # -- is this the first call?
my $group = $_[1]; # -- which group is the value part of?
my $value = $_[2]; # -- what is the value being passed?

if (!defined($state{$group})) { # -- save the first value in the group
$state{$group} = $value;

} elsif ($value > $state{$group}) { # -- or save a higher value in the group
$state{$group} = $value;

}
}

-- final subroutine, called after the end of a group is reached
sub my_max_final {
my $group = $_[1];
return $state{$group}; # -- return the highest value from the group

}

EOF

SELECT ClientDNS, my_max(RespSize)
 FROM example_webserv_100
 GROUP BY 1
 DURING ALL;

The my_max() subroutine keeps track of the incremental state, and the my_max_final()
subroutine returns the final value. Note that my_max() does not return any value; instead, it
manages the global list variable %state.

The arguments to the custom Perl aggregate are saved in the global variables $call, $group,
and $value. You reference arguments to custom Perl aggregates by their ordinal numbers.

The first aggregate argument, $_[0], the call argument, indicates with the string values first
and other whether this is the first invocation of the aggregate. Many custom Perl aggregates, like
my_max(), do not use the call argument. The call argument has the string value final whenever
the final subroutine is called.

The second aggregate argument, $_[1], the group argument, indicates which values are
combined in the GROUP BY clause. The third argument, $_[2], the value argument, has a value
from a row in the group identified by $_[1] when the incremental subroutine is called.
Reporting Guide 407

Chapter 12: Perl Subroutines
The %state variable is a Perl hash table. This table receives its key values from the group values
in $_[1], which the Perl aggregate passes into the SQL statement. Each entry in the hash table
represents one GROUP BY group. The subroutines access entries in %state with the expression
$state{$group}.

IMPORTANT: Because the EDW uses parallel processing when aggregating data, when
an aggregate function is called, the EDW creates multiple instances of the code. Each
instance of the code is receives a subset of the group keys. Therefore, you cannot write
functions that perform calculations among groups.

For more information on declaring Perl aggregates, see “User-Defined Subroutines”, on page
306.
408 Reporting Guide

Perl Execution Environment
PERL EXECUTION ENVIRONMENT

This section describes these topics:

• “Exiting from Perl Subroutines”, next

• “List Support and Perl Functions”, on page 409

• “Using Macros in Perl Subroutines”, on page 410

• “Understanding Parallelism and Side Effects”, on page 411

Exiting from Perl Subroutines

The SQL query engine prohibits the use of the Perl exit operation. Subroutines and modules that
include it may fail to load. Use the Perl die function instead. For example:

WITH Digit AS BUILTIN 'perl5' FUNCTION <<EOF

my %digits = (
"0" => "zero", "1" => "one", "2" => "two", "3" => "three",
"4" => "four", "5" => "five", "6" => "six", "7" => "seven",
"8" => "eight", "9" => "nine"

);

sub Digit {
return $digits{ $_[0] } || die "invalid value $_[0]";

}

EOF

When a Perl function or aggregate calls die during query execution, an SQL processing
exception with the message passed to die is raised, and the query terminates.

List Support and Perl Functions

Perl subroutines can accept lists as arguments. In doing so, the @_ argument is an array filled with
the list values. Perl subroutines can also return lists of values. Use the addamark::setInto()
function to populate the entries in the returned list. The function has the following syntax:

addamark::setInto(<index>, <value>)

The <value> is stored in a temporary list variable, at the entry specified by <index>. The
temporary list is returned as the INTO variable when the function is invoked with the INTO
keyword:

<list_function>(<arguments>) INTO <list_variable>

For more information on INTO variables, see “Working with Lists”, on page 313.

Under normal evaluation, the following test() function returns its first argument. With the INTO
keyword, the function also returns a list. The list contains three entries: the second argument, the
third argument, and the constant 'three'.
Reporting Guide 409

Chapter 12: Perl Subroutines
WITH Test AS BUILTIN 'perl5' FUNCTION <<EOF
sub Test {

-- make the list available
addamark::setInto(1, $_[1]);
addamark::setInto(2, $_[2]);
addamark::setInto(3, 'three');

-- return a single value
return $_[0];

}
EOF

SELECT TOP 1
, foo[1]
, foo[2]
, foo[3]
, Test('a', 'b', 'c') INTO foo

FROM example_webserv_100
DURING ALL;

The result of running this query is a four-column row containing the values 'b', 'c', 'three', and 'a':

+--+
| Results for SQL file >example-ref-perl-02.sql< |
+---------+---------+---------+-------------+----+
| foo_1 | foo_2 | foo_3 |perl_into_foo|
|(varchar)|(varchar)|(varchar)| (varchar) |
+---------+---------+---------+-------------*
output is post-sorted
+---------+---------+---------+-------------*
|b |c |three |a |
+---------+---------+---------+-------------*

Using Macros in Perl Subroutines

To facilitate the sharing of information between Perl subroutines and SQL expressions, the SQL
query engine defines global Perl variables for each expression macro declared in the SELECT
statement. The names of these global variables have the following form:

$sql_<macro_identifier>

In the following statement, the $sql_start and $sql_end Perl variables correspond to the
$start and $end expression macros used in the DURING clause:

WITH $start AS _timeadd(_now(), -1, 'hour')
WITH $end as _now()

WITH Last2 AS BUILTIN 'perl5' AGGREGATE <<EOF
my %state;
sub Last2 {

my $group = $_[1];
my $value = $_[2];
$state{$group} = $value;

}
sub Last2_final {

my $group = $_[1];
410 Reporting Guide

Perl Execution Environment
return "From $sql_start to $sql_end: $state{$group}";
}

EOF

SELECT _perlagg('Last2', ClientDNS)
FROM example_webserv_100
DURING $start, $end

+--+
| Results for SQL file >example-ref-perl-03.sql< |
+---+
| perlagg |
| (varchar) |
+---*
output is post-sorted
+---*
|From 1012558131000000 to 1012561731000000: 212.9.190.79|
+---*

For more information, see “Macros”, on page 302.

Understanding Parallelism and Side Effects

While a single _perl() expression is free to make use of side effects, the combination of the
distributed nature of the SQL query engine and the column-wise evaluation order make it very
difficult for two separate _perl() expressions to share state in a meaningful way.

For example, consider the following simple query:

WITH Count AS BUILTIN 'perl5' FUNCTION <<EOF
my $count = 0;
sub Count {
$count++;
return $count;

}
EOF

SELECT _perl('Count') as cnt1, _perl('Count') as cnt2
FROM Table
DURING ALL;

When this query runs against a table that contains a few thousand rows spread across a three-
host instance, the following results might be returned:

cnt1 cnt2
---- ----
1 24
1 322
1 366
10 33
10 331
10 375
100 421
100 465
1000 1300
1001 1301
Reporting Guide 411

Chapter 12: Perl Subroutines
1002 1302
1003 1303
101 422
101 466

...

The output is interesting for several reasons:

Duplicate count values occur because the SQL engine distributes the query across then hosts
in the EDW instance. Separate processes on each host have their own private copies of
$count.

The differences between values returned by the first and second _perl() expressions occur
because the SQL query engine makes an arbitrary number of calls to the 'cnt1' expression
before it makes any calls to the 'cnt2' expression.

The actual number of column values processed at any given instant is based on network
buffering and is not generally predictable.

ACCESSING EXTERNAL MODULES

This section describes these topics to help you access external modules from within Perl
subroutines in HawkEye AP SQL:

• “The use Directive”, next

• “The @INC Variable”, on page 413

• “The Inline.pm Perl Module”, on page 413

The use Directive

The Perl use directive loads external Perl modules into the Perl interpreter that is embedded in the
EDW. For example, the following statement declares a Perl function named FormatBytes() that
formats numbers as bytes. The statement invokes the function on the sum of the RespSize
column, which contains byte counts.

The statement uses the Number::Format Perl module to implement the custom Perl function. The
Perl use directive makes the module available within the custom Perl function. Depending on the
number of bytes in the expression sum(RespSize), the result of FormatBytes() might be 744.6K.

WITH FormatBytes AS BUILTIN 'perl5' FUNCTION <<EOF
use Number::Format; # -- access the external Perl module from the Perl library
my $fmt = Number::Format->new;

sub FormatBytes {
return $fmt->format_bytes($_[0])

}
EOF

SELECT _perl('FormatBytes', sum(RespSize))
FROM example_webserv_100
DURING ALL;

NOTE: As an alternative, you can access Perl modules that have been installed in the Perl
interpreter. For more information, see “Installing Perl Modules”, on page 415.
412 Reporting Guide

Testing and Debugging Perl Subroutines
The @INC Variable

The Perl use directive causes queries to fail if the Perl interpreter cannot load the specified
module from one of the places identified by the @INC variable. The following query will show you
the contents of the @INC variable:

WITH inc AS BUILTIN 'perl5' FUNCTION <<EOF
sub inc {
return join " ", @INC;

}
EOF

SELECT TOP 1 _perl('inc')
FROM example_webserv_100 -- use any table containing at least one record
DURING ALL;

If @INC does not reflect where your Perl modules are located, use the perldir= directive in the
athttpd.conf file to specify up to 36 additional places where perl modules may be found.
Separate locations with colons (:). For example:

perldir=/usr/local/lib/perl5/site_perl:/usr/lib/perl5/site_perl

You can find the athttpd.conf file in this location:

<SenSage_Home>latest/etc/sls/instance/<instance_name>

The Inline.pm Perl Module

The Inline.pm module allows you to call functions written in other languages, including C, C++,
and Java, from within your custom Perl subroutines. Languages like C/C++ provide greater
performance than Perl, and they allow you to reuse existing code written in these other
languages.

TESTING AND DEBUGGING PERL SUBROUTINES

This section describes these topics:

• “Running Perl Subroutines in Test Scripts”, next

• “Printing Debugging Messages in Utility Logs”, on page 414

• “Printing Debugging Messages to External Files”, on page 415

Running Perl Subroutines in Test Scripts

You can test the code of your Perl routines by placing it in command line scripts. For example, to
test the Mean() Perl aggregate, copy the body of the aggregate declaration as shown below to a
file named mean.pl, and run the command perl mean.pl.

Use Statistics::Descriptive;
my %state;
sub Mean {
my $call = $_[0];
my $group = $_[1];
Reporting Guide 413

Chapter 12: Perl Subroutines
my $value = $_[2];

if ($call eq "first") {
$state{$group} = Statistics::Descriptive::Full->new();

}
$state{$group}->add_data($value);
}

sub Mean_final {
my $group = $_[1];
return $state{$group}->mean();

}

simulate the operation of _perlagg()

Mean("first", 0, 1000);
Mean("other", 0, 2000);
Mean("other", 0, 3000);
print Mean_final("final", 0), "\n");

The last six lines in the test-script version simulate how the SQL query engine invokes the final
subroutine when your Perl aggregate runs within a SELECT statement.

Printing Debugging Messages in Utility Logs

Use the addamark::dbgPrint() Perl function to print debugging messages that appear in the log
files of the atquery and atload EDW utilities. The debug printing function has the following
syntax:

addamark::dbgPrint(<message>)

For example:

WITH sleeper AS BUILTIN 'perl5' FUNCTION <<EOF

my $counter=0;

sub sleeper {
$counter++;
if ($counter % 2 == 0) { sleep(1); } # -- sleep a second every other call

my $t = localtime();
addamark::dbgPrint("$t: $counter");

}
EOF

NOTE:

The EDW runs the debug printing function in parallel on several computers at once,
interleaving the messages in the results. This causes messages to appear in a different orders
each time.

If you have many debugging messages to print, it may be easier to write them to your own log
files. For more information, see “Printing Debugging Messages to External Files”, next.
414 Reporting Guide

Installing Perl Modules
Printing Debugging Messages to External Files

Use Perl open() and print() functions to print debugging messages to your own, external files.
For example:

WITH MyCount AS BUILTIN 'perl5' function <<EOF
 my $count = 0;
 sub MyCount {
 open(LOG, ">>/tmp/log.$$.txt");
 $count++;
 print LOG "Count is ", $count, "\n" ;
 close(LOG);
 return $count;
 }
EOF
SELECT _perl('MyCount')
 FROM example_webserv_100
 DURING ALL;

LOGFILE LOCATIONS AND FILENAMES

Generally, you should open and write debugging messages to files in the /tmp directory. This
well-known directory exists on every host in an EDW instance. Perl subroutines run in parallel on
each host in the instance, so each host will a version of your log file with a unique set of
messages.

Generally, you should include the special symbols $$ in the filenames of you log files. The
symbols expand to the to current process ID. Embedding the process ID in filenames prevents
multiple processes from overwriting the log files of each other.

INSTALLING PERL MODULES

The EDW embeds a fully-functional Perl interpreter, atperl, within its SQL query engine. The
interpreter lets you use Perl code in HawkEye AP SQL Select statements while loading or
querying the EDW. As with any Perl interpreter, you can install Perl modules into atperl to extend
its functionality.

Perl modules are distributed in files with names like the following:

<module_name>.tar.gz

The EDW distribution includes these Perl modules:

Module Distribution File Description

addamark::dbgPrint Pre-installed. Prints debugging messages
in the log files of the atload and
atquery commands.

addamark::setInto Pre-installed. Supports implementing Perl
subroutines that work with the INTO
keyword.
For more information, see Chapter 12:
Perl Subroutines in the Reporting Guide.

Archive::Tar Archive-Tar-0.22.tar.gz Pre-installed. Load logs from .tar files.
Reporting Guide 415

Chapter 12: Perl Subroutines
In addition, you can download and install third-party Perl modules, such as the Crypt::Rijndael
module for strong encryption. Rijndael is the U.S. government standard for strong encryption,
designed to replace DES.

To install a Perl module in the EDW

1 Download or copy the distribution file to /usr/local/src.

2 Run clsync to copy the file to every host in the EDW cluster:

clsync <module_filename>.tar.gz

3 Run the following clssh command to install the module on every host in the EDW cluster:

clssh "cd /usr/local/src; \
tar zxf <module_filename>; cd <module_filename>;
..<Sensage_Home>/latest/bin/atperl Makefile.PL; make; make install"

4 If the Perl module supports test, create a test by running the following clssh command:

clssh "cd //usr/local/src; \
cd <module_filename>; \
..<Sensage_Home>/latest/bin/atperl make test"

NOTE: When you install Perl modules you must also have installed the GCC compiler.

Archive::Zip Archive-Zip-1.01.tar.gz Pre-installed. Load logs from .zip files.

Compress::Zlib Compress-Zlib-1.19.tar.gz Pre-installed. Archive loaded logs in .tar
files.

Module Distribution File Description
416 Reporting Guide

CHAPTER 13

Using the DBD Driver

The DBD driver (DBD::Addamark) implements the DBI (Database Independent) API over the Perl
API of the EDW. Only queries (that is, SQL SELECT statements) are supported.

This chapter contains these sections:

• “Installation”, next

• “Sample DBI Program”, on page 418

• “Explanation of the Sample DBI Program”, on page 418

• “DBI elements Supported by HawkEye AP”, on page 420

• “HawkEye AP DBD attributes”, on page 421

NOTE: For more information about the DBI API, including full documentation, visit:

http://search.cpan.org/~timb/

and click the DBI link under Registered Modules near the bottom of the page.

INSTALLATION

Requirements:

Perl 5.x — (note that there is an issue with 5.8.2 as described in the Bundle::DBI README)

DBI 1.32 or later — download the distribution file for the Bundle::DBI Perl module from:

http://search.cpan.org/~timb/

and click the DBI link under Registered Modules near the bottom of the page.

DBD::Addamark — provided in the HawkEye AP software distribution in the following location:
<SenSage_Home>/latest

Install the DBI and DBD modules according to the instructions for “Installing Perl Modules”, on
page 415.

INTERNATIONAL SUPPORT IN THE DBD DRIVER

The DBD driver does not support international characters in text data. The driver operates on
ASCII text data only.
Reporting Guide 417

http://search.cpan.org/~timb/DBI-1.40/DBI.pm

Chapter 13: Using the DBD Driver
SAMPLE DBI PROGRAM

#!/usr/bin/env perl
use strict;
use v5.6.0;
use DBD::Addamark;
#DBI->trace(3);

my $port = shift;
print "$port\n";

my $namespace = shift;
print "$namespace\n";

my $sqlfile = shift;
print "$sqlfile\n";

my $sql = "";
open(FILE, $sqlfile) || die "could not open $sqlfile";

while (<FILE>) {
$sql .= $_;

}
close(FILE);

my $dbh = DBI->connect('dbi:Addamark:host.domain.com:1234',
'username', 'password');

my $sth = $dbh->prepare("select * from syslog during all");
$sth->execute();

while(my $d = $sth->fetch) {
print "@$d\n";

}

EXPLANATION OF THE SAMPLE DBI PROGRAM

Perl Code Explanation

#!/usr/bin/env perl A special syntax that tells the shell to run the rest of the
script using Perl.

use strict;
use v5.6.0;

Set up the Perl environment (v5.6.0) and use strict to
restrict unsafe constructs and limit constructs to using
Perl version 5.6.0.

use DBD::Addamark; Specify that DBI should use the Addamark DBD driver.

#DBI->trace(3); A comment line. Uncomment to set DBI tracing to level
three. Trace level three traces DBI calls returning with
results or errors, method entries with parameters and
returning with results, and adds high-level information
from the DBD driver and internal information from DBI.

my $port = shift; Declares $port as a local variable and sets the value.
The $port variable stores the TCP/IP port to be used
when connecting to the database server.
418 Reporting Guide

Explanation of the Sample DBI Program
print "$port\n"; A comment line. Uncomment to display the port number
to be used.

my $namespace = shift; Declares $namespace as a local variable and sets the
value. The $namespace variable stores the namespace
to be used when connecting to the database server.

print "$namespace\n"; A comment line. Uncomment to display the Addamark
namespace.

my $sqlfile = shift; Declares $sqlfile as a local variable and sets the
value. The $sqlfile variable stores the name of the
SQL file. The SQL file contains the SQL statement or
statements (query or queries) to send to the database
server.

print "$sqlfile\n"; A comment line. Uncomment to display the name of the
sqlfile.

my $sql = ""; Declares $sql as a local variable and initializes (clears)
the value. The $sql variable stores a SQL statement to
be passed to the database server after the connection is
made.

open(FILE, $sqlfile) ||
die "could not open $sqlfile";

Try to open the SQL file. If the file cannot be opened,
exits the program and displays an error message saying,
“could not open <sqlfile>”, where <sqlfile> is the name
of the SQL file.

while (<FILE>) {
$sql .= $_;

}

Iteratively read the contents of the SQL file and puts the
content into the $_ global variable.

close(FILE); Closes the SQL file.

my $dbh =
DBI->connect(

'dbi:Addamark:' . $port,
'', ''

);

Declares $dbh as a local variable and sets the value to
DBI->connect('dbi:Addamark:' . $port, '',
''), where port is the value previously stored in the
$port variable. This entire variable is used to construct
the database handle, which contains the information
needed to connect with the database.

$dbh->{addamark_tableNamespace} =
$namespace;

The completely constructed database handle connects
to the Addamark database in the
addamark_tableNamespace. The connection to the
database server uses the TCP/IP port contained in the
$port variable, and DBI uses the DBD::Addamark driver.

my $sth = $dbh->prepare($sql); Declares $sth as a local variable, which is used to
prepare the SQL statement from the SQL file for
execution. A statement handle is returned, and that
handle contains the SQL statement that may be executed
later using the execute method.

$sth->execute ||
warn $sth->errstr;

Executes the SQL statement (from the SQL file)
contained in the statement handle. If an error occurs, an
error message is displayed, showing the errors from the
last SQL statement executed.

while(my $d = $sth->fetch) {
 print "@$d\n";
}

Iteratively retrieve the results from the query and stores
them in the local variable $d, then displays the results,
one to a line.

Perl Code Explanation
Reporting Guide 419

Chapter 13: Using the DBD Driver
DBI ELEMENTS SUPPORTED BY HAWKEYE AP

DBD::Addamark supports most of the database and statement handle attributes; however, not all
the attributes are relevant to this driver. As of DBI v.1.40, the supported attributes are:

Database handle attributes

AutoCommit

Driver

Name

Statement

RowCacheSize

Username

For more information about these attributes, see:

http://search.cpan.org/~timb/DBI-1.40/DBI.pm#Database_Handle_Attributes

Statement handle attributes

NUM_OF_FIELDS

NUM_OF_PARAMS

NAME

NAME_lc

NAME_uc

NAME_hash

NAME_lc_hash

NAME_uc_hash

TYPE

CursorName

Database

Statement

For more information about these attributes, see

http://search.cpan.org/~timb/DBI-1.40/DBI.pm#Statement_Handle_Attributes
420 Reporting Guide

http://search.cpan.org/~timb/DBI-1.40/DBI.pm#Database_Handle_Attributes
http://search.cpan.org/~timb/DBI-1.40/DBI.pm#Statement_Handle_Attributes

HawkEye AP DBD attributes
UNSUPPORTED DBI FEATURES

The following DBI features are not supported by HawkEye AP:

Question marks (?) as placeholders (and the ParamValues statement handle attribute will
return “undef”) are not supported.

The following database schema related methods are not supported:

table_info()

column_info()

primary_key_info()

primary_key()

foreign_key_info()

tables()

type_info_all()

type_info()

get_info()

For more information about these methods, see

http://search.cpan.org/~timb/DBI-1.40/DBI.pm#Database_Handle_Methods

HAWKEYE AP DBD ATTRIBUTES

In addition to the previously mentioned attributes, DBD::Addamark implements the following
private driver attributes:

addamark_tableNamespace

addamark_rawOutputHandle

addamark_dbgprintRequest

addamark_oob_callback

addamark_tableNamespace

addamark_tableNamespace

String, required. Sets the tableNamespace value in the request.

$dbh->{addamark_tableNamespace} = "default";

addamark_rawOutputHandle

IO handle, optional. Sets the rawOutputHandle for dumping internal request data. Useful for
debugging. Must be specified when addamark_dbgprintRequest is enabled.
Reporting Guide 421

http://search.cpan.org/~timb/DBI-1.40/DBI.pm#Database_Handle_Methods

Chapter 13: Using the DBD Driver
addamark_dbgprintRequest

Boolean, optional, default is “F” if not specified. When true, the request to the server is printed out,
and the program terminates. Requires addamark_rawOutputHandle to be specified.

addamark_oob_callback

Subroutine reference, optional. A subroutine that is called with any OOB data sent back during the
execution of the request. The subroutine should have the following structure:

sub oob_callback {
my $code = shift;
my $msg = shift;
my $type = shift;
my $data = shift;
.... do any processing here

}

Use a callback subroutine to code progress meters, for example.
422 Reporting Guide

CHAPTER A

TIME ZONES

This appendix lists every time zone supported by the EDW and the HawkEye AP Console. When
you enter a time value in HawkEye AP Console, use one of the time-zone formats listed below in
“Supported Time Zones”, on page 423.

Because the EDW handles raw data from logs, which does not always use the supported time
zones, it must accommodate some shortenings of time zone indicators found in that data (such
as PDT for Pacific Daylight Time and CST for Central Standard Time). For more information, see
“Time-Zone Conversion”, next.

TIME-ZONE CONVERSION

Sensage SQL provides functions that recognize specific time-zone shortenings and maps them to
standard time-zone strings, as shown in the table below.

NOTE:

Because Arizona does not support MDT, Mountain Standard Time is NOT converted to
Mountain Daylight Time.

Because Indiana does not consistently support EDT, Eastern Standard Time is NOT converted
to Eastern Daylight Time.

SUPPORTED TIME ZONES

Africa/Addis_Ababa
Africa/Algiers
Africa/Asmera
Africa/Bangui
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo

Shortened Time
Zone

Standard Time
Zone

Description

PST PST8PDT Pacific Standard Time and Pacific Daylight Time are
interpreted as either standard time or daylight savings
depending on the time of year of the actual date.

PDT PST8PDT

MDT MST7MDT Mountain Daylight Time is interpreted as either standard
time or daylight savings depending on the time of year of
the actual date.

CST CST6CDT Central Standard Time and Central Daylight Time are
interpreted as either standard time or daylight savings
depending on the time of year of the actual date.

CDT CST6CDT

EDT EST5EDT Eastern Daylight Time is interpreted as either standard
time or daylight savings depending on the time of year of
the actual date.
Reporting Guide 423

Chapter A:
Africa/Ceuta
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Porto-Novo
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/ComodRivadavia
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/San_Juan
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atka
America/Bahia
America/Barbados
America/Belem
America/Belize
America/Boa_Vista
America/Bogota
America/Boise
America/Buenos_Aires
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
424 Reporting Guide

Supported Time Zones
America/Catamarca
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Coral_Harbour
America/Cordoba
America/Costa_Rica
America/Cuiaba
America/Curacao
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Ensenada
America/Fort_Wayne
America/Fortaleza
America/Glace_Bay
America/Godthab
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Vevay
America/Indianapolis
America/Inuvik
America/Iqaluit
America/Jamaica
America/Jujuy
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Knox_IN
America/La_Paz
America/Lima
America/Los_Angeles
America/Louisville
America/Maceio
America/Managua
America/Manaus
America/Martinique
America/Mazatlan
America/Mendoza
America/Menominee
America/Merida
America/Mexico_City
Reporting Guide 425

Chapter A:
America/Miquelon
America/Monterrey
America/Montevideo
America/Montreal
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Center
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Acre
America/Porto_Velho
America/Puerto_Rico
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Rio_Branco
America/Rosario
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Shiprock
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Virgin
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/South_Pole
Antarctica/Syowa
Antarctica/Vostok
Arctic/Longyearbyen
426 Reporting Guide

Supported Time Zones
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Ashkhabad
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Calcutta
Asia/Choibalsan
Asia/Chongqing
Asia/Chungking
Asia/Colombo
Asia/Dacca
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Gaza
Asia/Harbin
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Istanbul
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kashgar
Asia/Katmandu
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macao
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qyzylorda
Reporting Guide 427

Chapter A:
Asia/Rangoon
Asia/Riyadh
Asia/Riyadh87
Asia/Riyadh88
Asia/Riyadh89
Asia/Saigon
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Tel_Aviv
Asia/Thimbu
Asia/Thimphu
Asia/Tokyo
Asia/Ujung_Pandang
Asia/Ulaanbaatar
Asia/Ulan_Bator
Asia/Urumqi
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faeroe
Atlantic/Jan_Mayen
Atlantic/Madeira
Atlantic/South_Georgia
Atlantic/Stanley
Australia/ACT
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Canberra
Australia/Currie
Australia/Darwin
Australia/Hobart
Australia/LHI
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/NSW
Australia/North
Australia/Perth
Australia/Queensland
Australia/South
Australia/Sydney
Australia/Tasmania
Australia/Victoria
Australia/West
Australia/Yancowinna
Brazil/Acre
428 Reporting Guide

Supported Time Zones
Brazil/DeNoronha
Brazil/East
Brazil/West
CET
CST6CDT
Canada/Atlantic
Canada/Central
Canada/East-Saskatchewan
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Canada/Saskatchewan
Canada/Yukon
Chile/Continental
Chile/EasterIsland
Cuba
EET
EST
EST5EDT
Egypt
Eire
Europe/Amsterdam
Europe/Andorra
Europe/Athens
Europe/Belfast
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Helsinki
Europe/Istanbul
Europe/Kaliningrad
Europe/Kiev
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Nicosia
Europe/Oslo
Europe/Paris
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Reporting Guide 429

Chapter A:
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Tiraspol
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich
GB
GB-Eire
GMT
HST
Hongkong
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Iran
Israel
Jamaica
Japan
Kwajalein
Libya
MET
MST
MST7MDT
Mexico/BajaNorte
Mexico/BajaSur
Mexico/General
Mideast/Riyadh87
Mideast/Riyadh88
Mideast/Riyadh89
NZ
NZ-CHAT
Navajo
PRC
PST8PDT
Pacific/Apia
Pacific/Auckland
Pacific/Chatham
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
430 Reporting Guide

Supported Time Zones
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Johnston
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Ponape
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Samoa
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Truk
Pacific/Wake
Pacific/Wallis
Pacific/Yap
Poland
Portugal
ROK
Singapore
Turkey
US/Alaska
US/Aleutian
US/Arizona
US/Central
US/East-Indiana
US/Eastern
US/Hawaii
US/Indiana-Starke
US/Michigan
US/Mountain
US/Pacific
US/Samoa
UTC
W-SU
WET
Reporting Guide 431

Chapter A:
432 Reporting Guide

Reporting Guide

INDEX
Symbols

* argument 292
@_ argument 409
@INC 412
__ prefix in SELECT for invisible targets 271
_fifo() 399
_fifo() and SLICE BY 278
_first() 278, 337
_fromindex() 403
_fromname() 402
_if() 319
_iftable() 320
_into() 313
_last() 278, 337
_lc() 354
_list() 321
_lms_buildinfo() 401
_lms_taskid() 400
_lookup() 313, 324
_md5() 355
_md5_64() 355
_now() 375
_nth() 322
_perl() 313
_perl(), example 409
_perlagg() example 413
_quantize() 395
_rev_dns() 334
_sprintf() 372
_strcat() 371
_strformat() 372
_strjoin() 371
_strleft() 361
_strlen() 357
_strlink() 369
_strlowercase() 354
_strmatch_strstr() 358
_strmatchlist() 313, 359
_strmd5() 355
_strmd5_64() 355
_strmiddle() 361
_strright() 361
_strsplit() 313, 360
_strsplitxsv() 313, 360
_strsum() 337
_strtrim() 361
_struppercase() 354
_substr() 361
_tablematch() 334

_time() 375
_timeadd() 375
_timediff() 375
_timestart() 375
_uc() 354

A

accessing
HawkEye AP Console 25
online help 36

activting rules 261
Add Group icon 145
addamark::dbgPrint() 413
addamark::setInto() 409
Administration mode

and scheduling items 229
associating report to alerts 165
introduced 28

Aggregate
functions 278, 337
partitioning 278

Aggregates, defining in Perl 406
aggregation

understanding 154
Alert Player 78
alerts

associated reports 69
defined 66
diagram display 79
Exception 66, 84
filtering 77
overview 203
security 75
security, monitoring 71
sorting 76
system 66
triggering Correlator rule 83

Alerts Table 68
alignment

column format 170
All Report Definitions list

finding reports 98
icons 97
metadata 100
overview 95
permissions 95
running SQL reports 181
running Wizard reports 149
Reporting Guide 433

Index — B
All Schedules list 229
Analytics

and reporting 38
Arrays, list support 409
AS, named targets 271
asset group 68
asset tree

security alerts 67
associated reports

data point investigation 62
launching 69
opening 54
security alerts 69

associating reports
and parameters 194
to alerts 164
to reports 161

athttpd.conf, listing where Perl modules are located 412
auto-merge 224
Average

report data 54
avg 337
avg() 337

B

backdating schedules 236
backslash

syntax usage explained 24
bar charts 171
batched event collection 37
Batches

defined 37
BETWEEN and IN 292
bool 292
BOTTOM 271
Browse Cache Date tab 114
browsing to reports 57
buildinfo 401
BUILTIN example 406

C

C++, calling functions 412
C, calling functions 412
cache entry

defined 43, 95, 114
deleting 116
explained 220
managing 114
merging automatically 224
most recent 217
scheduled run 217
selecting namespace 114

specifying multiple 51, 220
unscheduled 217
viewing & changing 114

cached reports 43
calculating

report data 53
calendars

Preview 135
cancelling report runs 107
Case expression 292, 301
Characters

removing from a string 361
charts

associated reports on data points 62
bar 171
color format 173
defining 171
displaying 49, 174
displaying in dashboard 207
investigating data 60
line 171

Chooser
introduced 33
namespaces 130
searching 33
sorting 34

clauses
defined 270

Clear all Finished 108
clearing

run status 108
colors

chart formatting 173
column formatting 170

Column Criteria icons 142
Column expressions 289
columns

changing name and data type 169
changing width & position 167
chart format 171
condition groups 144
criteria operators 141
derived date 132
formatting 167
formatting font, alignment & color 170
further refinements 146
hiding & showing 48
ordering 132
renaming 132
selecting 132
setting max rows 147
specifying criteria 139
specifying multiple values 141
specifying sort order 148
using regular expressions 104, 142

ComboBox
defined 142, 188
icon 188
illustrated 144
434 Reporting Guide

D — Index
Concatenating strings 371
Conditional evaluation based on current table 320
Conditional evaluation with _if 319
Constants, literal 289
contributing events 80

raw data 83
viewing 79

Conversions
data processing expressions 292

Convert strings to upper or lower case 354
CONVERT() 292, 300
Correlator

managing rules 247
priority of security alerts 75
rule that triggered alert 83

count 337
Count function

SQL reports 190
Wizard reports 157

count() 337
count(*) 278, 292
creating

dashboard folders 225
dashboards 204
libraries 197
pages 213
parameter fields 188
parameter fields for SQL reports 187
report folders 111
schedules 232
shortcuts 110
SQL reports 177
Wizard reports 129

criteria
adding condition group 144
column 139
column operators 141
date 134, 222
further refinements 146
parameter fields 187
regular expressions 104, 142
specifying 133
specifying custom dates 138
specifying multiple values 141

Criteria tab 180
CSV

schedule export 242
separator character 36

D

dashboards
adding & formatting image widgets 214
adding report widgets 205
and Date Options 217
and folders 225
and schedules 223

automatically merging cache entries 224
changing namespaces 222
chart & table display 207
creating 204
creating pages 213
deleting 228
deploying 228
displaying charts & tables 174
exporting 86
formatting text widgets 212
locking 215
naming 204
overview 41
permissions 226
positioning widgets 209
removing widgets 216
running 227
running and refreshing 85
scheduled cache entries 217
scheduling 238
setting options 216
text widgets 211
time range 220
unscheduled cache entries 217
viewing & changing cache entries 220
viewing properties 220
widgets 29

Dashboards mode
introduced 27

data
grouping 154
investigating in a chart 60

data source 183
changing 153
parameterizing in SQL report 191
specifying for SQL report 178
specifying in Wizard 129

data types 292
Date and Time column 132
date criteria

and dashboards 222
and schedules 239

Date Options
dashboard 217
specifying cache entry 51, 220

Date Options tab
report widgets 221

dates
dashboard options 217
derived columns 132
specifying criteria for SQL reports 180
specifying criteria for Wizard reports 134
specifying custom criteria 138

deactivating rules 261
Debugging messages, printing 413
Delete parameter icon 142
deleting

cache entries 116
dashboards 228
Reporting Guide 435

Index — E
items from schedule 238
report definitions 118
schedules 236, 244
shortcuts 111, 119

Die 409
disabling schedules 244
DISTINCT 271, 292
distribution filter 120
DNS

reverse lookup 334
documentation

roadmap 21
searching 36

Dropdown List
defined 142, 188
icon 188
illustrated 144

Dropdown List icon 188
DURING

and SQL reports 179
clause explained 275

E

Edit icon 97
Edit rule text icon 260
editing 183

reports 151
schedules 244
SQL reports 183

EDW
and HawkEye AP Console 38

Elements
picking from a list with _nth 322

emailing schedule items 242
enabling schedules 244
encoding

specifying 36
errors

and permissions 231
report runs 108
schedule runs 230

Evaluation, conditional with _if 319
event collection

batched 37
streaming 37

events
contributing 79

example_webserv_100 269
Exception alerts

viewing 84
widget 85

Exception Report Alerts
and schedules 241

Exit and die 409
EXPLODE 313

limitations 313

EXPLODE BY 313
exporting

dashboards and reports 86
maximum number of rows 87
scheduled items 242

expressions
CASE 301
column 289
conversions 292
data processing 292
data source 289
formatting 395
in SELECT statements 271

external modules
loading 412

F

fifo 399
filter

distribution 120
filtering

alert data 77
report data 46

FIRST 271, 337
float 292
Floating point literals 289
folders

creating 111
dashboard 225
managing shortcuts 110
permissions 110
populating 111
report 97
scheduling 238

font
column format 170

Format
strings 372

Format an expression
using a list of bucket specifications 395

format_bytes example 412
formatting

image widgets 214
text widgets 212

frequency of schedule 233
FROM

constant list expression 313
described 273
parameterizing clause in SQL reports 191

fromindex 403
fromname 402
Function syntax 292
Functions

aggregates 278, 337
calling those not written in Perl 412
concatenating strings 371
436 Reporting Guide

I — Index
conditional evaluation based on current table 320
convert strings to upper or lower case 354
creating a URL from string data 369
current table 402
data processing expressions 292
formatting expressions 395
formatting strings 372
function-style conversions 292
lookups 324
MD5 hashes 355
parsing a string into a list of fields 360
picking an element from a list with _nth 322
queue with _fifo 399
removing characters from a string 361
returning internal information with _lms_buildinfo 401
returning internal information with _lms_taskid 400
reverse dns lookup 334
storing expressions with _list 321
string length 357
string matching 358, 359

G

Global Menu Bar 30
graphs. See charts
GROUP BY 278

multi-column 278
grouping data 154

H

Hashes
creating an MD5 hash from a string 355

HAVING
described 283
parameterizing clause in SQL report 190

HawkEye AP Console
accessing and using 25
Administration mode 28
Chooser 33
CSV format 36
Dashboards mode 27
encoding 36
Global Menu Bar 30
interface components 29
logging in 26
logging out 27
navigating 27
Navigator 31
online help 36
opening 26
Options Pane 35
overview 25
password 36

preferences 35
Reports mode 27
scheduling items 229
searching 33
Sensage SQL 38
sorting items in Chooser 34
Tool Bar 30
Wizard report scope 33
Workspace 31

HawkEye AP Console Status Bar 35
help 36
HEREdocs 289, 406
Hostnames

converting IPs to 334

I

icons
Add Group 145
adding & deleting conditions 140
adding condition set 140
All Report Definitions 97
ascending & descending sort 131
asset tree & status 67
cancel report run 107
Column Criteria 142
ComboBox 188
delete parameter 142
Dropdown List 188
Edit 97
editing alerting rule text 260
Options Pane 112
preview calendar 135
previous 138
Run 97, 182
SQL Reports 97
Text Box 188
Text Field 143
View 97
viewing report cache entries 149
Wizard reports 97

identifier
defined 270

if 319
iftable 320
IN and BETWEEN 292
IN n PASSES 278
Including Perl modules 412
Inline

C 412
Inline.pm 412
installing

Perl modules 415
int32 292
int64 292
Integer literals 289
INTO 313
Reporting Guide 437

Index — J
INTO, array and list support 409
investigation

from line chart 60
IP Range 68
IPs

converting to hostname 334
item criteria 239

J

Java, calling functions 412

K

keywords
defined 270

L

LAST 271, 337
launching

Alert Player 79
associated reports 69
HawkEye AP Console 26

lc 354
libraries

adding to a query 195
creating 197
entering the text 199
linking 198

lifetime of schedule 235
line charts 171
linking a library 198
list 321
List support 313, 409
Lists 313

acceptors 313
generators 313

literals
constants 289
defined 270

Loading an external module into the interpreter 412
locking a dashboard 215
logging in

HawkEye AP Console
logging in 26

logging out
HawkEye AP Console 27

Logging, debugging info to a server-side file 413
look ups

DNS from IP address 334
from external data sources 324

table names 334
lookup 324
Lowercase 354

M

macros
and SQL reports 185
using in Perl subroutines 409

managing cache entries 114
Margin 167
Math operators 292
max 337
MAX example 406
max() 278, 337
Maximum

report data 54
maximum rows

setting 166
maximum rows to export 87
maximum rows to retrieve 147
md5 355
mean.pl 413
median () 341
metadata

defined 48
hiding 48
report 44
searching in All Report Definitions 100
show & hide 112

min 337
min() 278, 337
Minimum

report data 54
modifying

report display 112
shortcuts 111

Modules, including 412
Modules, loading external with 'use' 412
-M-ops=exit 409
Multiple return values 313

N

namespaces 269
and schedules 239
changing 222
Chooser 130
defined 33, 43, 178
displaying changes to 131
parameterizing data source 191
selecting a cache entry 114
specifying for SQL report 177
viewing & changing 220
438 Reporting Guide

Q — Index
naming
dashboards 204
libraries 198
schedules 232
SQL reports 177
Wizard reports 130

Navigator
introduced 31

now() 375
nth 322
Number

Format example 412

O

online help 36
open() 413
Operators 292

column criteria 141
comparison 292
logical 292
math 292
precedence 292

Options Pane
icon 112
introduced 35

ORDER BY 284
ordering

columns 132
overview

Reports mode 95
rules 247
scheduling HawkEye AP Consoleitems 229

P

pages
changing focus to 32
creating 213
HawkEye AP Console Welcome 26
navigating 32
relative position 32
removing widgets 216
running & refreshing 85

Paper size 166
Parallelism and side effects 409
parameterizing SQL query 184
parameters

and associated reports 194
creating fields 188
limitations 186, 190
modifying at run time 194
running SQL report 189

SQL reports 185
Parser

managing rules 247
Partitioning, aggregates 278
password

changing 36
PDF

schedule export 242
Perl

installing modules 415
Perl functions

about using 405
and SQL reports 197

Perl modules
installing 415

Perl processing, how it works 405
perldir= 412
permissions

All Report Definitions list 95
dashboards & folders 226
report folders 110
reports & shortcuts 110
reports, shortcuts & folders 122
viewing schedule errors 231

Pick an element from a list 322
populatiung folders 111
Precedence

for operators 292
preferences

and Chooser display 131
beginning of week 102, 134
setting 35

Prefixes
__ 271

Preview Calendar icon 135
printing

options 166
Printing, debugging messages 413
Processing Perl in SQL engine 405
Properties tab 161, 166, 220

Q

quantize 395
query

adding a library 195
basic syntax 269
defined 177
editing SQL 183
entering for SQL report 179
parametering 184
parameterizing 185
required parts 269
viewing 50, 116, 200

Queue function _fifo 399
Reporting Guide 439

Index — R
R

Regular Expressions 104, 142
renaming

columns 132
report cache entry

defined 95
explained 43
viewing time range and namespace 51

report definition
defined 95, 97

report scope 33
reports

adding widget to dashboard 205
and aggregation 154
and libraries 195
associated 54, 69
associated reports 194
associating 161, 164
automatically merging cache entries 224
browsing 57
cache entry defined 43, 114
calculating & sorting values 53
calculations 53
cancelling runs 107
changing namespace 222
changing time range 51, 220
chart & table formats 49
charts 171
clearing run status 108
Count 157
creating SQL 177
creating Wizard 129
deleting definitions 118
description 130
displaying charts & tables 174
DURING clause 179
editing 151
editing SQL 183
entering SQL query 179
exporting 86
filtering data 46
finding in All Report Definitions list 98
folders 97, 110
formatting columns 167
grouping data 154
hiding columns & metadata 48
introduced 42
managing shortcuts 110
max rows to retrieve 147, 166
maximum rows to export 87
metadata 44
modifying display 112
namespaces 130, 191
naming 130
overview of SQL 177
parameterizing SQL query 184
permissions 110, 122

print options & max rows 166
run errors 108
run status 106
running SQL 181
running Wizard 100, 149
scheduling 229, 238
setting thresholds 159
sorting 46
specifying criteria 133
specifying data source for SQL 178
specifying data source in Wizard 129
specifying namespace 177
specifying time range 180
summarizing data 154
viewing 114
viewing SQL 50
viewing SQL query 200
viewing statistics 117

Reports mode
introduced 27
overview 95

RespSize example 412
Return internal information with _lms_buildinfo 401
Returning internal information with _lms_taskid 400
rev_dns 334
Reverse DNS lookup 334
risk view 74
risks

viewing 75
rules

activating & deactivating 261
Correlator 75
overview 247
triggering alerts 83

Run icon 97, 182
Run Report Status 106, 109, 150
running

dashboards 227
parameterized SQL reports 189
schedules 233
SQL reports 181
Wizard reports 100, 149

S

Schedule Criteria 222
scheduled run 217
schedules

accessing the scheduler 229
and dashboards 223
assigning items to schedule 238
backdating 236
creating 232
date criteria 239
defined 229
deleting 236, 244
deleting items 238
440 Reporting Guide

S — Index
editing 244
emailing reports, dashboards, & folders 242
enabling & disabling 244
end date & time 236
errors 230
Exception Report Alerts 241
exporting 242
frequency & lifetime 233
item criteria 239
lifetime 235
namespaces 239
naming 232
output 241
running 233
start date & time 235
time zones 236

searching 33
All Report Definitions 98
Chooser 33
metadata 100

security alerts
Alert Player 78
Alerts Table 68
and associated reports 69
and correlator rules 83
asset tree 67
contributing events 80
filtering data 77
monitoring 71
overview 66
risk view 74, 75
setting priority 75
sorting data 76
threat view 74, 75

SELECT
BOTTOM 271
computed expressions 271
DISTINCT 271
FIRST 271
invisibile targets __ 271
LAST 271
named targets AS 271
TOP 271

Sensage SQL
introduced 38

Server-side, logging debugging info to 413
setting

priority of security alerts 75
shortcuts

creating 110
deleting 119
deleting & modifying 111
managing in folders 110
permissions 110, 122

Show tab 112
SLICE BY 278
SLICE BY and _fifo() 278
SORT BY 292
sorting

alert data 76
Chooser items 34
icons 131
report data 53
specifying order 148

split 360
Splitting a group of records with SLICE BY and _fifo() 278
sprintf 372
SQL

basic syntax 269
HawkEye AP Console 38
macros 409
viewing report query 50

SQL reports
adding a library 195
and macros 185
and namespaces 191
and Perl functions 197
and timestamps 179
associated 194
changing 199
Count function 190
creating 177
creating a library 197
creating parameter fields 187
default values 193
DURING 179
editing 183
editing query 183
entering query 179
modifying parameters at run time 194
overview 177
parameter limitations 186, 190
parameterizing data source 191
parameterizing FROM clause 191
parameterizing HAVING clause 190
parameterizing query 184
parameterizing WHERE clause 185
running 181, 189
setting name, description, & namespace 177
specifying data source 178
specifying date criteria 180
specifying time range 180
time range 179
viewing 199
viewing results 181
viewing the query 200
wildcards 188

SQL Reports icon 97
SQL tab 179
statistics

viewing 117
Statistics tab 53
status

report runs 106
Status Bar 35
Store expressions into a list with _list 321
strcat 371
streaming event collection 37
Reporting Guide 441

Index — T
Streams
defined 37

strformat 372
String length function 357
String literals 289
String matching 358, 359
Strings

concatenating 371
converting to upper or lower case 354
create from time 380
creating an MD5 hash from a string 355
formatted 372
parsing into a list of fields 360
removing characters from 361

strjoin 371
strleft 361
strlen 357
strlink 369
strlowercase 354
strmatch 358
strmatchlist 359
strmd5 355
strmiddle 361
_strptime() 383
strright 361
strsplit 360
strsplitxsv 360
strstr 358
strsum 337
strtrim 361
struppercase 354
substr 361
sum() 278
Summarize Tab 157
summarizing data 154
System Alerts

and schedule errors 231

T

Table and Chart display 112
Table functions 402
tablematch() 334
tables

conditional evaluation 320
targets

named with AS 271
taskid 400
Test scripts 413
Text Box

defined 142, 188
icon 188
using 188

Text Box icon 188
Text Field icon 143
text widgets

formatting 212

threat view 74
threats

viewing 75
thresholds

specifying 159
Time column

Day of Week column 132
Time functions 375
time range

and SQL reports 179
changing 51, 220
specifying for SQL report 180
viewing & changing 220

time zones
conversion functions 423
scheduling 236
setting 36
supported 423

time() 375
_timef() 380
_timeformat() 380
_timeparse() 383
timestamps

and SQL report DURING 179
conversion functions 380
derived columns 132
displaying 132
performing calculations on 375

Tool Bar 30
TOP 271
Total

report data 54
Typecast literals 289
Typecasts

alternative syntax 292

U

uc 354
Uppercase 354
URL, creating from string data 369
use 412
User List 68
using

Alert Player 78
HawkEye AP Console 25, 27
risk view 75
threat view 75

V

varchar 292
View icon 97
View Search Criteria 116, 201
442 Reporting Guide

W — Index
viewing
cache entries 114
raw event data 83
report query 116
report results 114
risks 75
SQL report results 181
threats 75
Wizard report results 149

W

Welcome page 26
WHERE 277

parameterizing clause in SQL report 185
widgets

adding & formatting image 214
adding to dashboard 205
alert 64
changing column order 45
changing namespace 222
Date Options tab 221
Exception Alerts 85
introduced 29
positioning 209
removing from a page 216
report 220
running & refreshing 85

text 211
wildcards

and SQL reports 188
WITH, using to declare Perl subroutines 406
Wizard 33
Wizard reports

and aggregation 154
associating 161, 164
charts 171
Count 157
creating 129
data source 129
description 130
displaying charts & tables 174
editing 151
formatting columns 167
grouping data 154
icon 97
modifying parameters at run time 194
namespaces 130
naming 130
print options & max rows 166
run errors 108
running 100, 149
setting thresholds 159
specifying criteria 133
summarizing data 154
viewing results 149

Workspace
introduced 31
Reporting Guide 443

Index — W
444 Reporting Guide

	Reporting Guide
	Table of Contents
	Preface
	Audience for this Book
	Reporting Guide Organization
	Road Map to HawkEye AP Documentation
	Conventions Used in HawkEye AP Documentation
	Contacting Technical Support

	Getting Started
	Overview
	Accessing HawkEye AP Console
	Logging into HawkEye AP Console
	Logging out of the HawkEye AP Console

	Navigating HawkEye AP Console
	Introduction to the Interface
	Global Menu Bar
	Global Tool Bar
	Navigator
	Workspace
	Chooser
	Options Pane
	Status Bar

	Setting Preferences
	Changing Your Password
	Accessing Online Help

	How does your data get to HawkEye AP Console?
	Reporting and HawkEye AP Analytics
	Querying and Sensage SQL

	Using Dashboards
	Overview
	Viewing Reports
	About HawkEye AP Reports
	Cached Data: Making Stored Data Quickly Available
	Namespaces: Using a Single Report or Dashboard to Access Different Data
	Viewing and Changing Display of Report Data and Metadata
	Changing Column Order
	Widening Column Display in a Report
	Filtering and Sorting Report Data
	Showing and Hiding Report Columns and Metadata
	Changing Between Table and Chart Formats
	Viewing the SQL Query and Other Properties

	Manipulating and Expanding Report Results
	Viewing and Changing the Time Range and Namespace
	Calculating Report Data
	Opening an Associated Report
	Browsing to Other Reports
	Investigating Data from a Line Chart

	Viewing Security Alerts
	Background
	About HawkEye AP Security Alerts
	Security Alerts: Working with the Asset Tree
	Security Alerts: Working with the Alerts Table
	Viewing the Information in a Security Alert
	Launching Associated Reports
	Understanding and Using Threat and Risk Views
	Background
	Understanding Threat and Risk Views
	Using Threat View
	Using Risk View

	Sorting Alert Data
	Widening Column Display in an Alert Widget
	Acknowledging Viewed Alerts
	Filtering Alert Data
	Security Alerts: Using the Alert Player
	Expanding Alert Table Data
	The First Contributing Event
	The Second and Subsequent Contributing Events
	Viewing the Raw Data

	Security Alerts: Understanding the Alerting Rule that Raised the Alert
	Viewing Exception Alerts
	Viewing the Report that Raised the Exception
	Using the Exception Alert Widget

	Refreshing Dashboards and Running Items
	Exporting Dashboards and Reports
	Exporting a Dashboard or Report to PDF
	Exporting a Dashboard
	Exporting from Reports Mode
	PDF Cover Sheet
	Instructions for Exporting to PDF

	Exporting a Report to a CSV File
	Exporting a Report to an HTML File
	Exporting a Report to an XML File

	Running, Viewing, and Managing Reports
	Overview of Reports Mode and the All Report Definitions List
	What Does a Report Definition Specify?

	Finding Specific Reports in the All Report Definitions List
	Running a Report
	Background
	Run Dialog for a Wizard Report
	Modifying the Time Range
	Changing the Namespace
	Modifying the Operator
	Adding, Deleting, and Modifying Criteria Rows

	Run Dialog for a SQL Report
	Run Report Status Dialog
	Running Multiple Reports Simultaneously

	Managing Report Shortcuts in Folders
	Modifying Display of a Report
	Viewing Report Results and Managing Report Cache Entries
	Viewing and Changing Cache Entries
	Deleting Cache Entries

	Viewing the Report Query
	Viewing Report Statistics
	Deleting Report Definitions
	Viewing and Assigning Report Schedules
	Using Distribution Filters to Limit Viewable Data by Role
	Applying a Distribution Filter to a Report

	Viewing and Assigning Report, Dashboard, and Folder Permissions
	Overview of Roles and Permissions
	Creating New Reports, Shortcuts, Folders or Dashboards
	Special Roles

	Default Roles and Permissions
	Setting Roles and Permissions in HawkEye AP Console

	Creating and Editing Wizard Reports
	Creating Wizard Reports
	Step 1: Specifying Where to Get the Data
	Specifying Report Name and Data Source
	Understanding How HawkEye AP Displays Date and Time
	Selecting, Renaming, and Ordering Columns for Display

	Step 2: Specifying What Data to Return
	Date Criteria: Specifying Time Range
	Column Criteria: Limiting the Number of Returned Rows

	Step 3: Specifying Further Refinements
	Specifying Maximum Number of Rows to Retrieve
	Specifying Column Sort

	Running and Viewing the Wizard Report
	Editing a Wizard Report
	Batch Editing Multiple Reports for Time Range, Time Zone, and Namespace
	Editing a Single Report
	Summarizing Data
	Creating Summary Reports
	Specifying a Threshold

	Associating Reports to a Report or Security Alert
	Associating a Report to Another Report
	Associating a Report to a Security Alert
	Specifying Print Options and Maximum Rows

	Formatting Columns
	Changing Column Width and Relative Position
	Changing Column Name and Data Type
	Formatting Font, Alignment, and Color

	Defining Charts

	Creating and Editing SQL Reports
	Overview of SQL Reports
	Creating a SQL Report
	Specifying the Report’s Name, Description, and Namespace
	Entering the Query
	Specifying a Time Range

	Running and Viewing the Report
	Editing the SQL Report
	Parameterizing Your Query
	Background
	Adding Parameters to the SQL Query
	Creating Parameter Fields That Display to the User
	Running and Testing the Parameterized SQL Report
	Adding a Parameter to the HAVING Clause
	Adding a Parameter to the FROM Clause
	Defining Parameters for an Associated Report
	Relevant Documentation

	Adding a Library to Your Query
	Creating a Library

	Viewing and Changing a SQL Report That Has Been Run
	Viewing and Manipulating the SQL Query

	Creating and Managing Dashboards
	Overview
	Creating a Dashboard
	Step 1: Creating the Dashboard
	Step 2: Adding a Report Widget to a Dashboard Page
	Step 3: Switching Between Chart and Table Display
	Step 3: Adding a Second Widget
	Step 5: Working With a Text Widget
	Creating a Page
	Adding and Formatting Image Widgets
	Locking the Dashboard
	Removing a Widget from a Page

	Managing Dashboards
	Setting Dashboard Options
	Specifying Date Options
	Setting Permissions
	Viewing Properties

	Modifying and Scheduling Report Widgets
	Viewing and Changing the Time Range and Namespace
	Scheduling and Modifying Reports from the Dashboard
	Automatically Merging Cache Entries
	Setting Other Widget Options

	Managing Dashboards in Folders
	Viewing and Assigning Dashboard and Folder Permissions
	Running Dashboards
	Deleting Dashboards
	Deploying Dashboards to Your Users

	Creating and Editing Schedules
	Overview
	Creating Schedules
	Naming and Describing a Schedule
	Schedule Tab: Setting Frequency and Lifetime
	Specifying Frequency
	Specifying Lifetime

	Reports & Dashboards Tab: Selecting and Deleting Items to Schedule
	Output Tab: Specifying Destination
	Emailing Scheduled Items

	Enabling and Disabling A Schedule

	Editing and Deleting Schedules

	Creating Alerting Rules from Templates
	Overview
	Introduction to Alerting Rule Templates
	Understanding Alert Thresholds and Alert Windows
	Creating and Modifying Alerting Rules from Templates
	Creating a Rule from a Template
	Activating, Deactivating, and Deleting Rules
	Activating Rules
	Deactivating Rules
	Deleting Rules

	Report Libraries Reference
	Geo IP Utility
	domain()
	Synopsis
	Arguments
	Example
	Return Value

	get_country_from_domain()
	Synopsis
	Arguments
	Example
	Return Value

	IP Conversion Utility
	hex_to_dotted_quad(IP address in Hexadecimal format)
	Synopsis
	Arguments
	Return Value
	Example

	Internal System Audit Library
	service2Description()
	Synopsis
	Arguments
	Return Value
	Example

	Microsoft Windows Library
	loginType2desc()
	Synopsis
	Arguments
	Return Value
	Example

	eventId2desc()
	Synopsis
	Arguments
	Return Value
	Example

	rights2desc()
	Synopsis
	Arguments
	Return Value
	Example

	k5code2desc()
	Synopsis
	Arguments
	Return Value
	Example

	Sensage SQL
	Overview of Sensage SQL SELECT Statements
	Basic SELECT Syntax
	Significant Terms

	Keywords and Clauses Required in SELECT statements
	About Tables and Namespaces

	Target Clauses
	Computed expressions in Target Clauses
	Named Targets
	Invisible targets
	DISTINCT Modifier Keyword
	FIRST and LAST Modifiers

	FROM Clauses
	Syntax of FROM Clauses
	Table Specifications in FROM Clauses
	Example FROM Clauses
	Identifiers as the Table Name
	String Expressions as the Table Name
	Expression Macros as the Table Name

	Including Rows from Bad Loads

	DURING Clauses
	Alternative Formats for DURING Clauses
	Timestamp Precision in DURING Clauses
	Subqueries and Views and the DURING Clause
	Specifying DURING ALL in the View-HawkEye AP Console Usage

	WHERE Clauses
	GROUP BY Clauses and Aggregation Queries
	Aggregation Partitioning
	Aggregation Functions
	Multi-column GROUP BY
	IN n PASSES

	SLICE BY Clauses
	HAVING Clauses
	ORDER BY Clauses
	UNION ALL Clauses
	Restrictions on UNION ALL
	Alternative to UNION ALL

	Data Types
	bool
	float
	int32
	int64
	timestamp
	varchar
	Converting varchar Values to timestamp Values
	Varchar Representations of Durations

	Data Source Expressions
	Column Expressions
	Literal constants
	Integer Literals
	Floating-Point Literals
	String Literals
	Typecast Literals

	Data Processing Expressions
	Operators
	Math Operators
	The String Concatenation Operator
	Comparison Operators
	Logical Operators
	Operator Precedence

	Functions
	Function Syntax
	Asterisks as Column-Expression Arguments
	The SORT BY Modifier Keyword
	The DISTINCT Modifier Keyword

	Conversion Expressions
	CONVERT Expressions
	Function-style Conversion Expressions
	Typecast Literal Conversion Expressions

	CASE Expressions

	Processing Directives
	Macros
	About Macros
	Expression Macros
	Star Macros
	Multiple Declarations of a Given Macro
	Resolving Macro Identifiers
	Overriding Multiple Macro Declarations

	User-Defined Subroutines
	Subqueries
	Subqueries with DURING Clauses
	Subqueries and UNION ALL Clauses
	Subqueries and the WHERE clause

	Table-Name Substitutes
	WHERE Clause Filters
	Settings
	The TIMEZONE Setting

	The Scope of Processing Directives
	Global State Modifiers
	Local Definitions

	Working with Lists
	Multiple Values as Lists
	Functions that Return Lists
	List Acceptors
	INTO Keyword
	List Expressions and FROM Clauses
	EXPLODE Keyword
	EXPLODE BY Keyword Phrase
	Some Helpful List Examples

	SQL Functions
	Conditional Evaluation Functions
	_if()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Example

	_iftable()
	Synopsis
	Description
	Arguments
	Return values
	Exceptions

	List Functions
	_list()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	_nth()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Example

	Lookup Functions
	_lookup()
	Synopsis
	Description
	Arguments
	Examples
	Exceptions
	Working with Lookup Files

	_rev_dns()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	_tablematch()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	Aggregation Functions
	avg()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Example

	count()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	max()
	Synopsis
	Description
	Arguments
	Return Values
	Exceptions
	Example

	min()
	Synopsis
	Description
	Arguments
	Return Values
	Exceptions
	Example

	median()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Example

	sum()
	Synopsis
	Description
	Arguments
	Return Values
	Exceptions
	Examples

	_first()
	Synopsis
	Description
	Arguments
	Return Value

	_last()
	Synopsis
	Description
	Arguments
	Return Value

	_strsum()
	Synopsis
	Description
	Arguments
	Return values

	Statistical Aggregate Functions
	var_pop()
	Synopsis
	Description
	Arguments
	Return Value

	stddev_pop()
	Synopsis
	Description
	Arguments
	Return values

	var_samp()
	Synopsis
	Description
	Arguments
	Return Value

	stddev_samp()
	Synopsis
	Description
	Arguments
	Return values

	variance()
	stddev()

	Logarithmic and Exponential Functions
	_log()
	Synopsis
	Description
	Arguments
	Return Value

	_log10()
	Synopsis
	Description
	Arguments
	Return Value

	_pow()
	Synopsis
	Description
	Arguments
	Return Value

	_exp()
	Synopsis
	Description
	Arguments
	Return Value

	Numeric Rounding Functions
	_abs()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	_ceil()
	Synopsis
	Description
	Arguments
	Return Value

	_floor()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	_round()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	String Functions
	_strlowercase(), _lc()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_struppercase(), _uc()
	Synopsis
	Description
	Arguments
	Return Value

	_strmd5(), _md5()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	_strmd5_64(), _md5_64()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	_strlen()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_strstr()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_strmatch()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Examples

	_strmatchlist()
	Synopsis
	Description
	Arguments
	Return Values
	Example

	_strsplit()
	Synopsis
	Description
	Arguments
	Return Values

	_strsplitxsv()
	Synopsis
	Description
	Return Values

	_strleft()
	Synopsis
	Description
	Arguments
	Return Value

	_strright()
	Synopsis
	Description
	Arguments
	Return Value

	_strmiddle(), substr()
	Synopsis
	Description
	Arguments
	Return Value

	_strrepeat()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Examples

	_strlpad()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Examples

	_strrpad()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Examples

	_strtrim()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_strlink()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_strcat()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	_strjoin()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	_strformat(), _sprintf()
	Synopsis
	Description
	Arguments
	Format Specifiers
	Return Value
	Exceptions
	Examples

	Time Functions
	_now(), now()
	Synopsis
	Description
	Return Value

	_time(), time()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_timeadd()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_timediff()
	Synopsis
	Description
	Arguments
	Return Value
	Example

	_timeformat(), _timef()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Example

	_timeparse(), _strptime()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions
	Examples

	_timestart()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	Network Address Functions
	_abbrev()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_broadcast()
	Synopsis
	Description
	Arguments
	Return Value

	_family()
	Synopsis
	Description
	Arguments
	Return Value

	_host()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_hostmask()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_masklen()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_netmask()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_set_masklen()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_mapto_ipv4, _mapto_ipv6()
	Synopsis
	Description
	Arguments
	Return Value

	_inet_plus()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_inet_minus()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	_inet_and(), _inet_not(), _inet_or()
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	Miscellaneous Functions
	_quantize()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	_fifo()
	Synopsis
	Description
	Arguments
	Return Value
	Exceptions

	_lms_taskid()
	Synopsis
	Description
	Return Value
	Example

	_lms_buildinfo()
	Synopsis
	Description
	Return Value
	Example

	_fromname()
	Synopsis
	Description
	Return Value
	Examples

	_fromindex()
	Synopsis
	Description
	Return Value
	Examples

	Perl Subroutines
	About Perl Subroutines in HawkEye AP SQL
	How Perl Processing Works

	Declaring Perl Functions
	Declaring Perl Aggregates
	Perl Execution Environment
	Exiting from Perl Subroutines
	List Support and Perl Functions
	Using Macros in Perl Subroutines
	Understanding Parallelism and Side Effects

	Accessing External Modules
	The use Directive
	The @INC Variable
	The Inline.pm Perl Module

	Testing and Debugging Perl Subroutines
	Running Perl Subroutines in Test Scripts
	Printing Debugging Messages in Utility Logs
	Printing Debugging Messages to External Files

	Installing Perl Modules

	Using the DBD Driver
	Installation
	Sample DBI Program
	Explanation of the Sample DBI Program
	DBI elements Supported by HawkEye AP
	HawkEye AP DBD attributes
	addamark_tableNamespace
	addamark_rawOutputHandle
	addamark_dbgprintRequest
	addamark_oob_callback

	Time Zones
	Time-Zone Conversion
	Supported Time Zones

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

